死磕 Synchronized 底层实现:轻量级锁

死磕Synchronized底层实现–轻量级

本文为死磕Synchronized底层实现第三篇文章,内容为轻量级锁实现。

轻量级锁并不复杂,其中很多内容在 偏向锁 一文中已提及过, 与本文内容会有部分重叠

另外轻量级锁的背景和基本流程在 概论 中已有讲解。 强烈建议在看过两篇文章的基础下阅读本文

本系列文章将对HotSpot的 synchronized 锁实现进行全面分析,内容包括偏向锁、轻量级锁、重量级锁的加锁、解锁、锁升级流程的原理及源码分析,希望给在研究 synchronized 路上的同学一些帮助。主要包括以下几篇文章:

死磕Synchronized底层实现–概论

死磕Synchronized底层实现–偏向锁

死磕Synchronized底层实现–轻量级锁

死磕Synchronized底层实现–重量级锁(待更新)

更多文章见个人博客https://github.com/farmerjohngit/myblog

本文分为两个部分:

1.轻量级锁获取流程

2.轻量级锁释放流程

本人看的JVM版本是jdk8u,具体版本号以及代码可以在 这里 看到。

轻量级锁获取流程

下面开始轻量级锁获取流程分析,代码在 bytecodeInterpreter.cpp#1816 。

CASE(_monitorenter): {
  oop lockee = STACK_OBJECT(-1);
  ...
  if (entry != NULL) {
   ...
   // 上面省略的代码中如果CAS操作失败也会调用到InterpreterRuntime::monitorenter

    // traditional lightweight locking
    if (!success) {
      // 构建一个无锁状态的Displaced Mark Word
      markOop displaced = lockee->mark()->set_unlocked();
      // 设置到Lock Record中去
      entry->lock()->set_displaced_header(displaced);
      bool call_vm = UseHeavyMonitors;
      if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
        // 如果CAS替换不成功,代表锁对象不是无锁状态,这时候判断下是不是锁重入
        // Is it simple recursive case?
        if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
          entry->lock()->set_displaced_header(NULL);
        } else {
          // CAS操作失败则调用monitorenter
          CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
        }
      }
    }
    UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
  } else {
    istate->set_msg(more_monitors);
    UPDATE_PC_AND_RETURN(0); // Re-execute
  }
}

如果锁对象不是偏向模式或已经偏向其他线程,则 successfalse 。这时候会构建一个无锁状态的 mark word 设置到 Lock Record 中去,我们称 Lock Record 中存储对象 mark word 的字段叫 Displaced Mark Word

如果当前锁的状态不是无锁状态,则CAS失败。如果这是一次锁重入,那直接将 Lock RecordDisplaced Mark Word 设置为 null

我们看个demo,在该demo中重复3次获得锁,

synchronized(obj){
    synchronized(obj){
    	synchronized(obj){
    	}
    }
}

假设锁的状态是轻量级锁,下图反应了 mark word 和线程栈中 Lock Record 的状态,可以看到右边线程栈中包含3个指向当前锁对象的 Lock Record 。其中栈中最高位的 Lock Record 为第一次获取锁时分配的。其 Displaced Mark word 的值为锁对象的加锁前的 mark word ,之后的锁重入会在线程栈中分配一个 Displaced Mark wordnullLock Record

死磕 Synchronized 底层实现:轻量级锁

为什么JVM选择在线程栈中添加 Displaced Mark word 为null的 Lock Record 来表示重入计数呢?首先锁重入次数是一定要记录下来的,因为每次解锁都需要对应一次加锁,解锁次数等于加锁次数时,该锁才真正的被释放,也就是在解锁时需要用到说锁重入次数的。一个简单的方案是将锁重入次数记录在对象头的 mark word 中,但 mark word 的大小是有限的,已经存放不下该信息了。另一个方案是只创建一个 Lock Record 并在其中记录重入次数,Hotspot没有这样做的原因我猜是考虑到效率有影响:每次重入获得锁都需要遍历该线程的栈找到对应的 Lock Record ,然后修改它的值。

所以最终Hotspot选择每次获得锁都添加一个 Lock Record 来表示锁的重入。

接下来看看 InterpreterRuntime::monitorenter 方法

IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
  ...
  Handle h_obj(thread, elem->obj());
  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
         "must be NULL or an object");
  if (UseBiasedLocking) {
    // Retry fast entry if bias is revoked to avoid unnecessary inflation
    ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
  } else {
    ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
  }
  ...
IRT_END

fast_enter 的流程在偏向锁一文已经分析过,如果当前是偏向模式且偏向的线程还在使用锁,那会将锁的 mark word 改为轻量级锁的状态,同时会将偏向的线程栈中的 Lock Record 修改为轻量级锁对应的形式。代码位置在 biasedLocking.cpp#212 。

// 线程还存活则遍历线程栈中所有的Lock Record
  GrowableArray<MonitorInfo*>* cached_monitor_info = get_or_compute_monitor_info(biased_thread);
  BasicLock* highest_lock = NULL;
  for (int i = 0; i < cached_monitor_info->length(); i++) {
    MonitorInfo* mon_info = cached_monitor_info->at(i);
    // 如果能找到对应的Lock Record说明偏向的线程还在执行同步代码块中的代码
    if (mon_info->owner() == obj) {
      ...
      // 需要升级为轻量级锁,直接修改偏向线程栈中的Lock Record。为了处理锁重入的case,在这里将Lock Record的Displaced Mark Word设置为null,第一个Lock Record会在下面的代码中再处理
      markOop mark = markOopDesc::encode((BasicLock*) NULL);
      highest_lock = mon_info->lock();
      highest_lock->set_displaced_header(mark);
    } else {
      ...
    }
  }
  if (highest_lock != NULL) {
    // 修改第一个Lock Record为无锁状态,然后将obj的mark word设置为执行该Lock Record的指针
    highest_lock->set_displaced_header(unbiased_prototype);
    obj->release_set_mark(markOopDesc::encode(highest_lock));
    ...
  } else {
    ...
  }

我们看 slow_enter 的流程。

void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
  markOop mark = obj->mark();
  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
  // 如果是无锁状态
  if (mark->is_neutral()) {
    //设置Displaced Mark Word并替换对象头的mark word
    lock->set_displaced_header(mark);
    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
      TEVENT (slow_enter: release stacklock) ;
      return ;
    }
  } else
  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
    assert(lock != mark->locker(), "must not re-lock the same lock");
    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
    // 如果是重入,则设置Displaced Mark Word为null
    lock->set_displaced_header(NULL);
    return;
  }

  ...
  // 走到这一步说明已经是存在多个线程竞争锁了 需要膨胀为重量级锁
  lock->set_displaced_header(markOopDesc::unused_mark());
  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
}

轻量级锁释放流程

CASE(_monitorexit): {
  oop lockee = STACK_OBJECT(-1);
  CHECK_NULL(lockee);
  // derefing's lockee ought to provoke implicit null check
  // find our monitor slot
  BasicObjectLock* limit = istate->monitor_base();
  BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
  // 从低往高遍历栈的Lock Record
  while (most_recent != limit ) {
    // 如果Lock Record关联的是该锁对象
    if ((most_recent)->obj() == lockee) {
      BasicLock* lock = most_recent->lock();
      markOop header = lock->displaced_header();
      // 释放Lock Record
      most_recent->set_obj(NULL);
      // 如果是偏向模式,仅仅释放Lock Record就好了。否则要走轻量级锁or重量级锁的释放流程
      if (!lockee->mark()->has_bias_pattern()) {
        bool call_vm = UseHeavyMonitors;
        // header!=NULL说明不是重入,则需要将Displaced Mark Word CAS到对象头的Mark Word
        if (header != NULL || call_vm) {
          if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
            // CAS失败或者是重量级锁则会走到这里,先将obj还原,然后调用monitorexit方法
            most_recent->set_obj(lockee);
            CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
          }
        }
      }
      //执行下一条命令
      UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
    }
    //处理下一条Lock Record
    most_recent++;
  }
  // Need to throw illegal monitor state exception
  CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
  ShouldNotReachHere();
}

轻量级锁释放时需要将 Displaced Mark Word 替换到对象头的 mark word 中。如果CAS失败或者是重量级锁则进入到 InterpreterRuntime::monitorexit 方法中。

//%note monitor_1
IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
 
  Handle h_obj(thread, elem->obj());
  ...
  ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
  // Free entry. This must be done here, since a pending exception might be installed on
  //释放Lock Record
  elem->set_obj(NULL);
  ...
IRT_END

monitorexit 调用完 slow_exit 方法后,就释放 Lock Record

void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
  fast_exit (object, lock, THREAD) ;
}
void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
  ...
  markOop dhw = lock->displaced_header();
  markOop mark ;
  if (dhw == NULL) {
     // 重入锁,什么也不做
   	 ...
     return ;
  }

  mark = object->mark() ;

  // 如果是mark word==Displaced Mark Word即轻量级锁,CAS替换对象头的mark word
  if (mark == (markOop) lock) {
     assert (dhw->is_neutral(), "invariant") ;
     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
        TEVENT (fast_exit: release stacklock) ;
        return;
     }
  }
  //走到这里说明是重量级锁或者解锁时发生了竞争,膨胀后调用重量级锁的exit方法。
  ObjectSynchronizer::inflate(THREAD, object)->exit (true, THREAD) ;
}

该方法中先判断是不是轻量级锁,如果是轻量级锁则将替换 mark word ,否则膨胀为重量级锁并调用 exit 方法,相关逻辑将在重量级锁的文章中讲解。

原文 

https://github.com/farmerjohngit/myblog/issues/14

本站部分文章源于互联网,本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供。如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。

PS:推荐一个微信公众号: askHarries 或者qq群:474807195,里面会分享一些资深架构师录制的视频录像:有Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化这些成为架构师必备的知识体系。还能领取免费的学习资源,目前受益良多

转载请注明原文出处:Harries Blog™ » 死磕 Synchronized 底层实现:轻量级锁

赞 (0)
分享到:更多 ()

评论 0

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址