转载

高并发架构设计都有哪些关键点

高并发架构设计都有哪些关键点?

秒杀其实主要解决两个问题,一个是并发读,一个是并发写

其实,秒杀的整体架构可以概括为“稳、准、快”几个关键字

然后就是“准”,就是秒杀 10 台 iPhone,那就只能成交 10 台,多一台少一台都不行。一旦库存不对,那平台就要承担损失,所以“准”就是要求保证数据的一致性。

最后再看“快”,“快”其实很好理解,它就是说系统的性能要足够高,否则你怎么支撑这么大的流量呢?不光是服务端要做极致的性能优化,而且在整个请求链路上都要做协同的优化,每个地方快一点,整个系统就完美了。

所以从技术角度上看“稳、准、快”,就对应了我们架构上的高可用、一致性和高性能的要求,我们的专栏也将主要围绕这几个方面来展开,具体如下。

  • 高性能。 秒杀涉及大量的并发读和并发写,因此支持高并发访问这点非常关键。本专栏将从设计数据的动静分离方案、热点的发现与隔离、请求的削峰与分层过滤、服务端的极致优化这 4 个方面重点介绍。
  • 一致性。 秒杀中商品减库存的实现方式同样关键。可想而知,有限数量的商品在同一时刻被很多倍的请求同时来减库存,减库存又分为“拍下减库存”“付款减库存”以及预扣等几种,在大并发更新的过程中都要保证数据的准确性,其难度可想而知。因此,我将用一篇文章来专门讲解如何设计秒杀减库存方案。
  • 高可用。 虽然我介绍了很多极致的优化思路,但现实中总难免出现一些我们考虑不到的情况,所以要保证系统的高可用和正确性,我们还要设计一个 PlanB 来兜底,以便在最坏情况发生时仍然能够从容应对。专栏的最后,我将带你思考可以从哪些环节来设计兜底方案。

设计高并发系统时应该注意的5个架构原则

高并发系统本质上就是一个满足大并发、高性能和高可用的分布式系统

设计原则

数据操作要尽量少

  1. 请求的数据能少就少。请求的数据包括上传给系统的数据和系统返回给用户的数据
  2. 返回的数据能少就少, 减少后端序列化的时间
  3. 数据库操作能少就少 , 这个就不说了

请求数要尽量少

这个就很直观了 , 请求数少并发量就少

调用链路要尽量短

高并发系统 1. 要降低系统依赖 , 防止因为依赖造成的各种问题 , 提高可用性 2. 降低流量入侵 , 大流量尽量隔绝在外面

不要有单点

系统中的单点可以说是系统架构上的一个大忌,因为单点意味着没有备份,风险不可控 , 其次流量不能分发像redis这种会有热点数据问题

一些基本案例

其实构建一个高并发系统并没有那么复杂 , 有一下的几个方法可以扛住比较高的并发

  1. 把高并发系统独立出来单独打造一个系统,这样可以有针对性地做优化,例如这个独立出来的系统就减少了店铺装修的功能,减少了页面的复杂度
  2. 在系统部署上也独立做一个机器集群,这样秒杀的大流量就不会影响到正常的商品购买集群的机器负载
  3. 将热点数据(如库存数据)单独放到一个缓存系统中,以提高“读性能”
  4. 增加秒杀答题,防止有秒杀器抢单
  5. 一些数据放入cdn中进行缓存
  6. 使用本地缓存部分数据

对电商来说系统差不多是这种样子 :

高并发系统场景优化1 - 动静分离

所谓动静分离 , 就是将一些不常变化 , 可以静态化 , 无状态 , 不需要逻辑处理的一些字段放在一个专门的系统或者地方 , 获取的时候不需要走后端系统的方法

动静分离原则

1. 把静态数据缓存到离用户最近的地方

常见的就三种 , 用户浏览器里、CDN 上 或者 在服务端的 Cache 中

2. 缓存http链接信息减少解析过程

Web 代理服务器根据请求URL查找缓存,直接取出对应的 HTTP 响应头和响应体然后直接返回,这个响应过程简单得连 HTTP 协议都不用重新组装,甚至连 HTTP 请求头也不需要解析

如何动静分离改造

静态数据处理方法

  1. URL 唯一化 : 为啥要 URL 唯一呢?前面说了我们是要缓存整个 HTTP 连接,那么以什么作为 Key 呢?就以 URL 作为缓存的 Key,例如以 id=xxx 这个格式进行区分
  2. 分离浏览者相关的因素。浏览者相关的因素包括是否已登录,以及登录身份等,这些相关因素我们可以单独拆分出来,通过动态请求来获取
  3. 分离时间因素。服务端输出的时间也通过动态请求获取。
  4. 异步化地域因素。详情页面上与地域相关的因素做成异步方式获取,当然你也可以通过动态请求方式获取,只是这里通过异步获取更合适。
  5. 去掉 Cookie。服务端输出的页面包含的 Cookie 可以通过代码软件来删除,如 Web 服务器 Varnish 可以通过 unset req.http.cookie 命令去掉 Cookie。注意,这里说的去掉 Cookie 并不是用户端收到的页面就不含 Cookie 了,而是说,在缓存的静态数据中不含有 Cookie

动态数据处理方法

这个没有什么好办法 , 动态数据一定会将流量打到后端 , 所以尽可能的减少这部分 , 如果不行就加机器

动静分离的几种架构方案

有 3 种方案可选:

  1. 单机本地cache层
  2. 统一 Cache 层
  3. 上 CDN。

1. 单机本地cache层

就是使用内存缓存比如java的ehcache等

优点 缺点
无网络开销 占用内存大
使用简单 同步机制需要使用其他方法保证

统一 Cache 层

典型的就是redis集群

优点 缺点
StartFragment单独一个 Cache 层,可以减少多个应用接入时使用 Cache 的成本。这样接入的应用只要维护自己的 Java 系统就好,不需要单独维护 Cache,而只关心如何使用即可 EndFragment StartFragmentCache 层内部交换网络成为瓶颈 EndFragment
StartFragment统一 Cache 的方案更易于维护,如后面加强监控、配置的自动化,只需要一套解决方案就行,统一起来维护升级也比较方便。 EndFragment StartFragment缓存服务器的网卡也会是瓶颈; EndFragment
StartFragment可以共享内存,最大化利用内存,不同系统之间的内存可以动态切换,从而能够有效应对各种攻击。 EndFragment StartFragment机器少风险较大,挂掉一台就会影响很大一部分缓存数据。 EndFragment

要解决上面这些问题,可以再对 Cache 做 Hash 分组,即一组 Cache 缓存的内容相同,这样能够避免热点数据过度集中导致新的瓶颈产生。 比如redis 热点数据分组

上 CDN

在将整个系统做动静分离后,我们自然会想到更进一步的方案,就是将 Cache 进一步前移到 CDN 上,因为 CDN 离用户最近,效果会更好

有以下几个问题需要解决

  1. 失效问题。前面我们也有提到过缓存时效的问题,不知道你有没有理解,我再来解释一下。谈到静态数据时,我说过一个关键词叫“相对不变”,它的言外之意是“可能会变化”。比如一篇文章,现在不变,但如果你发现个错别字,是不是就会变化了?如果你的缓存时效很长,那用户端在很长一段时间内看到的都是错的。所以,这个方案中也是,我们需要保证 CDN 可以在秒级时间内,让分布在全国各地的 Cache 同时失效,这对 CDN 的失效系统要求很高
  2. 命中率问题。Cache 最重要的一个衡量指标就是“高命中率”,不然 Cache 的存在就失去了意义。同样,如果将数据全部放到全国的 CDN 上,必然导致 Cache 分散,而 Cache 分散又会导致访问请求命中同一个 Cache 的可能性降低,那么命中率就成为一个问题。
  3. 发布更新问题。如果一个业务系统每周都有日常业务需要发布,那么发布系统必须足够简洁高效,而且你还要考虑有问题时快速回滚和排查问题的简便性。

因为上面的这些问题 , 所以cdn的部署方法一般都是分网络分区域的中心化部署

高并发系统场景优化2 - 处理热点

要关注热点

首先,热点请求会大量占用服务器处理资源,虽然这个热点可能只占请求总量的亿分之一,然而却可能抢占 90% 的服务器资源,如果这个热点请求还是没有价值的无效请求,那么对系统资源来说完全是浪费。

其次,即使这些热点是有效的请求,我们也要识别出来做针对性的优化,从而用更低的代价来支撑这些热点请求

热点操作和热点数据

所谓“热点操作”,例如大量的刷新页面、大量的添加购物车、双十一零点大量的下单等都属于此类操作。对系统来说,这些操作可以抽象为“读请求”和“写请求”,这两种热点请求的处理方式大相径庭,读请求的优化空间要大一些,而写请求的瓶颈一般都在存储层,优化的思路就是根据 CAP 理论做平衡

热点数据”比较好理解,那就是用户的热点请求对应的数据。而热点数据又分为“静态热点数据”和“动态热点数据”

静态热点数据和动态热点数据

所谓“静态热点数据”,就是能够提前预测的热点数据。例如,我们可以通过卖家报名的方式提前筛选出来,通过报名系统对这些热点商品进行打标。另外,我们还可以通过大数据分析来提前发现热点商品,比如我们分析历史成交记录、用户的购物车记录,来发现哪些商品可能更热门、更好卖,这些都是可以提前分析出来的热点

所谓“动态热点数据”,就是不能被提前预测到的,系统在运行过程中临时产生的热点。例如,卖家在抖音上做了广告,然后商品一下就火了,导致它在短时间内被大量购买

我们如何处理热点数据

发现热点数据

热点数据静态发现

静态热点数据可以通过商业手段,例如强制让卖家通过报名参加的方式提前把热点商品筛选出来,实现方式是通过一个运营系统,把参加活动的商品数据进行打标,然后通过一个后台系统对这些热点商品进行预处理,如提前进行缓存 . 或者使用技术手段提前预测,例如对买家每天访问的商品进行大数据计算,然后统计出 TOP N 的商品,我们可以认为这些 TOP N 的商品就是热点商品。

热点数据动态发现

主要处理动态热点数据的 , 都是使用技术手段实现的

  1. 构建一个异步的系统,它可以收集交易链路上各个环节中的中间件产品的热点 Key,如 Nginx、缓存、RPC 服务框架等这些中间件(一些中间件产品本身已经有热点统计模块)。
  2. 建立一个热点上报和可以按照需求订阅的热点服务的下发规范,主要目的是通过交易链路上各个系统(包括详情、购物车、交易、优惠、库存、物流等)访问的时间差,把上游已经发现的热点透传给下游系统,提前做好保护。比如,对于大促高峰期,详情系统是最早知道的,在统一接入层上 Nginx 模块统计的热点 URL。
  3. 将上游系统收集的热点数据发送到热点服务台,然后下游系统(如交易系统)就会知道哪些商品会被频繁调用,然后做热点保护。

这里我给出了一个图,其中用户访问商品时经过的路径有很多,我们主要是依赖前面的导购页面(包括首页、搜索页面、商品详情、购物车等)提前识别哪些商品的访问量高,通过这些系统中的中间件来收集热点数据,并记录到日志中。

我们通过部署在每台机器上的 Agent 把日志汇总到聚合和分析集群中,然后把符合一定规则的热点数据,通过订阅分发系统再推送到相应的系统中。你可以是把热点数据填充到 Cache 中,或者直接推送到应用服务器的内存中,还可以对这些数据进行拦截,总之下游系统可以订阅这些数据,然后根据自己的需求决定如何处理这些数据。

打造热点发现系统时,我根据以往经验总结了几点注意事项。

  1. 这个热点服务后台抓取热点数据日志最好采用异步方式,因为“异步”一方面便于保证通用性,另一方面又不影响业务系统和中间件产品的主流程。
  2. 热点服务发现和中间件自身的热点保护模块并存,每个中间件和应用还需要保护自己。热点服务台提供热点数据的收集和订阅服务,便于把各个系统的热点数据透明出来。
  3. 热点发现要做到接近实时(3s 内完成热点数据的发现),因为只有做到接近实时,动态发现才有意义,才能实时地对下游系统提供保护。

处理热点数据

处理热点数据通常有几种思路:一是优化,二是限制,三是隔离。

优化

优化热点数据最有效的办法就是缓存热点数据,如果热点数据做了动静分离,那么可以长期缓存静态数据。但是,缓存热点数据更多的是“临时”缓存,即不管是静态数据还是动态数据,都用一个队列短暂地缓存数秒钟,由于队列长度有限,可以采用 LRU 淘汰算法替换。

限制

限制更多的是一种保护机制,限制的办法也有很多,例如对被访问商品的 ID 做一致性 Hash,然后根据 Hash 做分桶,每个分桶设置一个处理队列,这样可以把热点商品限制在一个请求队列里,防止因某些热点商品占用太多的服务器资源,而使其他请求始终得不到服务器的处理资源。

隔离

高并发系统设计的第一个原则就是将这种热点数据隔离出来,不要让 1% 的请求影响到另外的 99%,隔离出来后也更方便对这 1% 的请求做针对性的优化。

具体到“秒杀”业务,我们可以在以下几个层次实现隔离。

  1. 业务隔离。把秒杀做成一种营销活动,卖家要参加秒杀这种营销活动需要单独报名,从技术上来说,卖家报名后对我们来说就有了已知热点,因此可以提前做好预热。
  2. 系统隔离。系统隔离更多的是运行时的隔离,可以通过分组部署的方式和另外 99% 分开。秒杀可以申请单独的域名,目的也是让请求落到不同的集群中。
  3. 数据隔离。秒杀所调用的数据大部分都是热点数据,比如会启用单独的 Cache 集群或者 MySQL 数据库来放热点数据,目的也是不想 0.01% 的数据有机会影响 99.99% 数据。

当然了,实现隔离有很多种办法。比如,你可以按照用户来区分,给不同的用户分配不同的 Cookie,在接入层,路由到不同的服务接口中;再比如,你还可以在接入层针对 URL 中的不同 Path 来设置限流策略。服务层调用不同的服务接口,以及数据层通过给数据打标来区分等等这些措施,其目的都是把已经识别出来的热点请求和普通的请求区分开

高并发系统场景优化3 - 流量削峰

为什么要削峰

我们知道服务器的处理资源是恒定的,你用或者不用它的处理能力都是一样的,所以出现峰值的话,很容易导致忙到处理不过来,闲的时候却又没有什么要处理。但是由于要保证服务质量,我们的很多处理资源只能按照忙的时候来预估,而这会导致资源的一个浪费

流量削峰的一些操作思路:排队、答题、分层过滤

排队

要对流量进行削峰,最容易想到的解决方案就是用消息队列来缓冲瞬时流量,把同步的直接调用转换成异步的间接推送,中间通过一个队列在一端承接瞬时的流量洪峰,在另一端平滑地将消息推送出去

如果流量峰值持续一段时间达到了消息队列的处理上限,例如本机的消息积压达到了存储空间的上限,消息队列同样也会被压垮,这样虽然保护了下游的系统,但是和直接把请求丢弃也没多大的区别

消息队列,类似的排队方式还有很多,例如:

  1. 利用线程池加锁等待也是一种常用的排队方式;
  2. 先进先出、先进后出等常用的内存排队算法的实现方式;
  3. 把请求序列化到文件中,然后再顺序地读文件(例如基于 MySQL binlog 的同步机制)来恢复请求等方式。

可以看到,这些方式都有一个共同特征,就是把“一步的操作”变成“两步的操作”,其中增加的一步操作用来起到缓冲的作用。

答题

增加答题其实有很多目的

  1. 第一个目的是防止部分买家使用秒杀器在参加秒杀时作弊 , 过滤无用请求
  2. 延缓请求,起到对请求流量进行削峰的作用,从而让系统能够更好地支持瞬时的流量高峰

分层过滤

前面介绍的排队和答题要么是少发请求,要么对发出来的请求进行缓冲,而针对秒杀场景还有一种方法,就是对请求进行分层过滤,从而过滤掉一些无效的请求。分层过滤其实就是采用“漏斗”式设计来处理请求的

假如请求分别经过 CDN、前台读系统(如商品详情系统)、后台系统(如交易系统)和数据库这几层,那么:

  1. 大部分数据和流量在用户浏览器或者 CDN 上获取,这一层可以拦截大部分数据的读取;
  2. 经过第二层(即前台系统)时数据(包括强一致性的数据)尽量得走 Cache,过滤一些无效的请求;
  3. 再到第三层后台系统,主要做数据的二次检验,对系统做好保护和限流,这样数据量和请求就进一步减少;
  4. 最后在数据层完成数据的强一致性校验。

分层过滤的核心思想是:在不同的层次尽可能地过滤掉无效请求,让“漏斗”最末端的才是有效请求。而要达到这种效果,我们就必须对数据做分层的校验。

分层校验的基本原则是:

  1. 将动态请求的读数据缓存(Cache)在 Web 端,过滤掉无效的数据读;
  2. 对读数据不做强一致性校验,减少因为一致性校验产生瓶颈的问题;
  3. 对写数据进行基于时间的合理分片,过滤掉过期的失效请求;
  4. 对写请求做限流保护,将超出系统承载能力的请求过滤掉;
  5. 对写数据进行强一致性校验,只保留最后有效的数据。

分层校验的目的是:在读系统中,尽量减少由于一致性校验带来的系统瓶颈,但是尽量将不影响性能的检查条件提前,如用户是否具有秒杀资格、商品状态是否正常、用户答题是否正确、秒杀是否已经结束、是否非法请求、营销等价物是否充足等;在写数据系统中,主要对写的数据(如“库存”)做一致性检查,最后在数据库层保证数据的最终准确性(如“库存”不能减为负数)。

高并发系统场景优化4 - 类库存扣减场景

库存场景非常典型 , 是高并发情况下对数据进行读写操作的场景

先说一下场景

总结来说,减库存操作一般有如下几个方式:

  1. 下单减库存,即当买家下单后,在商品的总库存中减去买家购买数量。下单减库存是最简单的减库存方式,也是控制最精确的一种,下单时直接通过数据库的事务机制控制商品库存,这样一定不会出现超卖的情况。但是你要知道,有些人下完单可能并不会付款。
  2. 付款减库存,即买家下单后,并不立即减库存,而是等到有用户付款后才真正减库存,否则库存一直保留给其他买家。但因为付款时才减库存,如果并发比较高,有可能出现买家下单后付不了款的情况,因为可能商品已经被其他人买走了。
  3. 预扣库存,这种方式相对复杂一些,买家下单后,库存为其保留一定的时间(如 10 分钟),超过这个时间,库存将会自动释放,释放后其他买家就可以继续购买。在买家付款前,系统会校验该订单的库存是否还有保留:如果没有保留,则再次尝试预扣;如果库存不足(也就是预扣失败)则不允许继续付款;如果预扣成功,则完成付款并实际地减去库存。

“下单减库存”在数据一致性上,主要就是保证大并发请求时库存数据不能为负数,也就是要保证数据库中的库存字段值不能为负数,一般我们有多种解决方案

  1. 一种是在应用程序中通过事务来判断,即保证减后库存不能为负数,否则就回滚;
  2. 直接设置数据库的字段数据为无符号整数,这样减后库存字段值小于零时会直接执行 SQL 语句来报错
  3. 再有一种就是使用 CASE WHEN 判断语句,例如这样的 SQL 语句:UPDATE item SET inventory = CASE WHEN inventory >= xxx THEN inventory-xxx ELSE inventory END

秒杀减库存的极致优化

在交易环节中,“库存”是个关键数据,也是个热点数据,因为交易的各个环节中都可能涉及对库存的查询。但是,我在前面介绍分层过滤时提到过,秒杀中并不需要对库存有精确的一致性读,把库存数据放到缓存(Cache)中,可以大大提升读性能。

解决大并发读问题,可以采用 LocalCache(即在秒杀系统的单机上缓存商品相关的数据)和对数据进行分层过滤的方式,但是像减库存这种大并发写无论如何还是避免不了,这也是秒杀场景下最为核心的一个技术难题。

因此,这里我想专门来说一下秒杀场景下减库存的极致优化思路,包括如何在缓存中减库存以及如何在数据库中减库存。

比如使用redis , 其实我们可以使用lua脚本来保证一致性

但是使用redis 有一定的局限性

如果你的秒杀商品的减库存逻辑非常单一,比如没有复杂的 SKU 库存和总库存这种联动关系,或者多组sku同时扣减的这种不涉及复杂事务的场景,我觉得完全可以.

如果涉及到多组扣减 , 如果有比较复杂的减库存逻辑,或者需要使用事务,还是建议必须在数据库中完成减库存-> 或者缓存支持事务

由于 MySQL 存储数据的特点,同一数据在数据库里肯定是一行存储(MySQL),因此会有大量线程来竞争 InnoDB 行锁,而并发度越高时等待线程会越多,TPS(Transaction Per Second,即每秒处理的消息数)会下降,响应时间(RT)会上升,数据库的吞吐量就会严重受影响

这就可能引发一个问题,就是单个热点商品会影响整个数据库的性能, 导致 0.01% 的商品影响 99.99% 的商品的售卖,这是我们不愿意看到的情况。一个解决思路是遵循前面介绍的原则进行隔离,把热点商品放到单独的热点库中。但是这无疑会带来维护上的麻烦,比如要做热点数据的动态迁移以及单独的数据库等

而分离热点商品到单独的数据库还是没有解决并发锁的问题,我们应该怎么办呢?要解决并发锁的问题,有两种办法:

  1. 应用层做排队。按照商品维度设置队列顺序执行,这样能减少同一台机器对数据库同一行记录进行操作的并发度,同时也能控制单个商品占用数据库连接的数量,防止热点商品占用太多的数据库连接。
  2. 数据库层做排队。应用层只能做到单机的排队,但是应用机器数本身很多,这种排队方式控制并发的能力仍然有限,所以如果能在数据库层做全局排队是最理想的。阿里的数据库团队开发了针对这种 MySQL 的 InnoDB 层上的补丁程序(patch),可以在数据库层上对单行记录做到并发排队。

你可能有疑问了,排队和锁竞争不都是要等待吗,有啥区别?如果熟悉 MySQL 的话,你会知道 InnoDB 内部的死锁检测,以及 MySQL Server 和 InnoDB 的切换会比较消耗性能,淘宝的 MySQL 核心团队还做了很多其他方面的优化,如 COMMIT_ON_SUCCESS 和 ROLLBACK_ON_FAIL 的补丁程序,配合在 SQL 里面加提示(hint),在事务里不需要等待应用层提交(COMMIT),而在数据执行完最后一条 SQL 后,直接根据 TARGET_AFFECT_ROW 的结果进行提交或回滚,可以减少网络等待时间(平均约 0.7ms)。据我所知,目前阿里 MySQL 团队已经将包含这些补丁程序的 MySQL 开源。另外,数据更新问题除了前面介绍的热点隔离和排队处理之外,还有些场景(如对商品的 lastmodifytime 字段的)更新会非常频繁,在某些场景下这些多条 SQL 是可以合并的,一定时间内只要执行最后一条 SQL 就行了,以便减少对数据库的更新操作。

高并发系统场景优化4 - 兜底方案

高并发系统为了保证系统的高可用,我们必须设计一个 Plan B 方案来兜底

高可用建设应该从哪里着手

说到系统的高可用建设,它其实是一个系统工程,需要考虑到系统建设的各个阶段,也就是说它其实贯穿了系统建设的整个生命周期,如下图所示:

具体来说,系统的高可用建设涉及架构阶段、编码阶段、测试阶段、发布阶段、运行阶段,以及故障发生时。接下来,我们分别看一下。

  1. 架构阶段:架构阶段主要考虑系统的可扩展性和容错性,要避免系统出现单点问题。例如多机房单元化部署,即使某个城市的某个机房出现整体故障,仍然不会影响整体网站的运转。
  2. 编码阶段:编码最重要的是保证代码的健壮性,例如涉及远程调用问题时,要设置合理的超时退出机制,防止被其他系统拖垮,也要对调用的返回结果集有预期,防止返回的结果超出程序处理范围,最常见的做法就是对错误异常进行捕获,对无法预料的错误要有默认处理结果。
  3. 测试阶段:测试主要是保证测试用例的覆盖度,保证最坏情况发生时,我们也有相应的处理流程。
  4. 发布阶段:发布时也有一些地方需要注意,因为发布时最容易出现错误,因此要有紧急的回滚机制。
  5. 运行阶段:运行时是系统的常态,系统大部分时间都会处于运行态,运行态最重要的是对系统的监控要准确及时,发现问题能够准确报警并且报警数据要准确详细,以便于排查问题。
  6. 故障发生:故障发生时首先最重要的就是及时止损,例如由于程序问题导致商品价格错误,那就要及时下架商品或者关闭购买链接,防止造成重大资产损失。然后就是要能够及时恢复服务,并定位原因解决问题。

为什么系统的高可用建设要放到整个生命周期中全面考虑?因为我们在每个环节中都可能犯错,而有些环节犯的错,你在后面是无法弥补的。例如在架构阶段,你没有消除单点问题,那么系统上线后,遇到突发流量把单点给挂了,你就只能干瞪眼,有时候想加机器都加不进去。所以高可用建设是一个系统工程,必须在每个环节都做好。

那么针对秒杀系统,我们重点介绍在遇到大流量时,应该从哪些方面来保障系统的稳定运行,所以更多的是看如何针对运行阶段进行处理,这就引出了接下来的内容:降级、限流和拒绝服务。

降级

所谓“降级”,就是当系统的容量达到一定程度时,限制或者关闭系统的某些非核心功能,从而把有限的资源保留给更核心的业务。它是一个有目的、有计划的执行过程,所以对降级我们一般需要有一套预案来配合执行。如果我们把它系统化,就可以通过预案系统和开关系统来实现降级。

降级方案可以这样设计:当秒杀流量达到 5w/s 时,把成交记录的获取从展示 20 条降级到只展示 5 条。“从 20 改到 5”这个操作由一个开关来实现,也就是设置一个能够从开关系统动态获取的系统参数。

这里,我给出开关系统的示意图。它分为两部分,一部分是开关控制台,它保存了开关的具体配置信息,以及具体执行开关所对应的机器列表;另一部分是执行下发开关数据的 Agent,主要任务就是保证开关被正确执行,即使系统重启后也会生效。

执行降级无疑是在系统性能和用户体验之间选择了前者,降级后肯定会影响一部分用户的体验,例如在双 11 零点时,如果优惠券系统扛不住,可能会临时降级商品详情的优惠信息展示,把有限的系统资源用在保障交易系统正确展示优惠信息上,即保障用户真正下单时的价格是正确的。所以降级的核心目标是牺牲次要的功能和用户体验来保证核心业务流程的稳定,是一个不得已而为之的举措。

限流

如果说降级是牺牲了一部分次要的功能和用户的体验效果,那么限流就是更极端的一种保护措施了。限流就是当系统容量达到瓶颈时,我们需要通过限制一部分流量来保护系统,并做到既可以人工执行开关,也支持自动化保护的措施。

这里,我同样给出了限流系统的示意图。总体来说,限流既可以是在客户端限流,也可以是在服务端限流。此外,限流的实现方式既要支持 URL 以及方法级别的限流,也要支持基于 QPS 和线程的限流。

首先,我以内部的系统调用为例,来分别说下客户端限流和服务端限流的优缺点。

  • 客户端限流,好处可以限制请求的发出,通过减少发出无用请求从而减少对系统的消耗。缺点就是当客户端比较分散时,没法设置合理的限流阈值:如果阈值设的太小,会导致服务端没有达到瓶颈时客户端已经被限制;而如果设的太大,则起不到限制的作用。
  • 服务端限流,好处是可以根据服务端的性能设置合理的阈值,而缺点就是被限制的请求都是无效的请求,处理这些无效的请求本身也会消耗服务器资源。

在限流的实现手段上来讲,基于 QPS 和线程数的限流应用最多,最大 QPS 很容易通过压测提前获取,例如我们的系统最高支持 1w QPS 时,可以设置 8000 来进行限流保护。线程数限流在客户端比较有效,例如在远程调用时我们设置连接池的线程数,超出这个并发线程请求,就将线程进行排队或者直接超时丢弃。

限流无疑会影响用户的正常请求,所以必然会导致一部分用户请求失败,因此在系统处理这种异常时一定要设置超时时间,防止因被限流的请求不能 fast fail(快速失败)而拖垮系统。

拒绝服务

如果限流还不能解决问题,最后一招就是直接拒绝服务了。

当系统负载达到一定阈值时,例如 CPU 使用率达到 90% 或者系统 load 值达到 2*CPU 核数时,系统直接拒绝所有请求,这种方式是最暴力但也最有效的系统保护方式。例如秒杀系统,我们在如下几个环节设计过载保护:

在最前端的 Nginx 上设置过载保护,当机器负载达到某个值时直接拒绝

拒绝服务可以说是一种不得已的兜底方案,用以防止最坏情况发生,防止因把服务器压跨而长时间彻底无法提供服务。像这种系统过载保护虽然在过载时无法提供服务,但是系统仍然可以运作,当负载下降时又很容易恢复,所以每个系统和每个环节都应该设置这个兜底方案,对系统做最坏情况下的保护。

最后,以java系统为例 , 如何提高系统性能

我们讨论的主要是系统服务端性能,一般用 QPS(Query Per Second,每秒请求数)来衡量,还有一个影响和 QPS 也息息相关,那就是响应时间(Response Time,RT),它可以理解为服务器处理响应的耗时

正常情况下响应时间(RT)越短,一秒钟处理的请求数(QPS)自然也就会越多,这在单线程处理的情况下看起来是线性的关系,即我们只要把每个请求的响应时间降到最低,那么性能就会最高。

但是你可能想到响应时间总有一个极限,不可能无限下降,所以又出现了另外一个维度,即通过多线程,来处理请求。这样理论上就变成了“总 QPS =(1000ms / 响应时间)× 线程数量”,这样性能就和两个因素相关了,一个是一次响应的服务端耗时,一个是处理请求的线程数。

响应时间和QPS的关系

对于大部分的 Web 系统而言,响应时间一般都是由 CPU 执行时间和线程等待时间(比如 RPC、IO 等待、Sleep、Wait 等)组成,即服务器在处理一个请求时,一部分是 CPU 本身在做运算,还有一部分是在各种等待。

理解了服务器处理请求的逻辑,估计你会说为什么我们不去减少这种等待时间。很遗憾,根据我们实际的测试发现,减少线程等待时间对提升性能的影响没有我们想象得那么大,它并不是线性的提升关系,这点在很多代理服务器(Proxy)上可以做验证。

如果代理服务器本身没有 CPU 消耗,我们在每次给代理服务器代理的请求加个延时,即增加响应时间,但是这对代理服务器本身的吞吐量并没有多大的影响,因为代理服务器本身的资源并没有被消耗,可以通过增加代理服务器的处理线程数,来弥补响应时间对代理服务器的 QPS 的影响。

其实,真正对性能有影响的是 CPU 的执行时间。这也很好理解,因为 CPU 的执行真正消耗了服务器的资源。经过实际的测试,如果减少 CPU 一半的执行时间,就可以增加一倍的 QPS。

也就是说,我们应该致力于减少 CPU 的执行时间。

线程数对 QPS 的影响

单看“总 QPS”的计算公式,你会觉得线程数越多 QPS 也就会越高,但这会一直正确吗?显然不是,线程数不是越多越好,因为线程本身也消耗资源,也受到其他因素的制约。例如,线程越多系统的线程切换成本就会越高,而且每个线程也都会耗费一定内存。

那么,设置什么样的线程数最合理呢?其实很多多线程的场景都有一个默认配置,即“线程数 = 2 * CPU 核数 + 1”。除去这个配置,还有一个根据最佳实践得出来的公式:

线程数 = [(线程等待时间 + 线程 CPU 时间) / 线程 CPU 时间] × CPU 数量 => 这个公式的核心思想就行将等待的时间让给其他线程去处理

当然,最好的办法是通过性能测试来发现最佳的线程数。

如何优化系统

对 Java 系统来说,可以优化的地方很多,这里我重点说一下比较有效的几种手段,供你参考,它们是:减少编码、减少序列化。接下来,我们分别来看一下。

1. 减少编码

Java 的编码运行比较慢,这是 Java 的一大硬伤。在很多场景下,只要涉及字符串的操作(如输入输出操作、I/O 操作)都比较耗 CPU 资源,不管它是磁盘 I/O 还是网络 I/O,因为都需要将字符转换成字节,而这个转换必须编码。

每个字符的编码都需要查表,而这种查表的操作非常耗资源,所以减少字符到字节或者相反的转换、减少字符编码会非常有成效。减少编码就可以大大提升性能。

那么如何才能减少编码呢?例如,网页输出是可以直接进行流输出的,即用 resp.getOutputStream() 函数写数据,把一些静态的数据提前转化成字节,等到真正往外写的时候再直接用 OutputStream() 函数写,就可以减少静态数据的编码转换。比如 把静态的字符串提前编码成字节并缓存,然后直接输出字节内容到页面,从而大大减少编码的性能消耗的,网页输出的性能比没有提前进行字符到字节转换时提升了 30% 左右。

2. 减少序列化

序列化也是 Java 性能的一大天敌,减少 Java 中的序列化操作也能大大提升性能。又因为序列化往往是和编码同时发生的,所以减少序列化也就减少了编码。

序列化大部分是在 RPC 中发生的,因此避免或者减少 RPC 就可以减少序列化,当然当前的序列化协议也已经做了很多优化来提升性能。有一种新的方案,就是可以将多个关联性比较强的应用进行“合并部署”,而减少不同应用之间的 RPC 也可以减少序列化的消耗。

所谓“合并部署”,就是把两个原本在不同机器上的不同应用合并部署到一台机器上,当然不仅仅是部署在一台机器上,还要在同一个 Tomcat 容器中,且不能走本机的 Socket,这样才能避免序列化的产生。

原文  https://segmentfault.com/a/1190000022589652
正文到此结束
Loading...