==
Map 是 Key-Value 对映射的抽象接口,该映射不包括重复的键,即一个键对应一个值。 HashMap 是 Java Collection Framework 的重要成员,也是Map族(如下图所示)中我们最为常用的一种。简单地说, HashMap`` 是基于哈希表的 Map 接口的实现,以 Key-Value 的形式存在,即存储的对象是 Entry (同时包含了 Key 和 Value) 。在 HashMap 中,其会根据hash算法来计算 key-value`的存储位置并进行快速存取。
HashMap<String, Integer> map = new HashMap<String, Integer>();
map.put("语文", 1);
map.put("数学", 2);
map.put("英语", 3);
map.put("历史", 4);
map.put("政治", 5);
map.put("地理", 6);
map.put("生物", 7);
map.put("化学", 8);
for(Entry<String, Integer> entry : map.entrySet()) {
System.out.println(entry.getKey() + ": " + entry.getValue());
}
HashMap 是基于哈希表的 Map 接口的非同步实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变。
HashMap 的实例有两个参数影响其性能: 初始容量 和 加载因子 。 容量 是哈希表中桶的数量, 初始容量 只是哈希表在创建时的容量。 加载因子 是哈希表在其容量自动增加之前可以达到多满的一种尺度。当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 rehash 操作(即重建内部数据结构),从而哈希表将具有大约两倍的桶数。
在 Java 编程语言中,最基本的结构就是两种,一个是数组,另外一个是指针(引用),HashMap 就是通过这两个数据结构进行实现。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。
HashMap 底层就是一个数组结构,数组中的每一项又是一个链表。当新建一个 HashMap 的时候,就会初始化一个数组。
HashMap构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
init();
}
HashMap共有4个构造函数
// 默认构造函数。 HashMap() // 指定“容量大小”的构造函数 HashMap(int capacity) // 指定“容量大小”和“加载因子”的构造函数 HashMap(int capacity, float loadFactor) // 包含“子Map”的构造函数 HashMap(Map<? extends K, ? extends V> map)
它包括几个重要的成员变量: table, size, threshold, loadFactor 。
table
Entry 是一个 static class
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
final int hash;
……
}
Entry 就是数组中的元素,每个 Entry 其实就是一个 key-value 对,它持有一个指向下一个元素的引用,这就构成了链表。
PUT储存源码
public V put(K key, V value) {
// 对key的hashCode()做hash
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// tab为空则创建
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 计算index,并对null做处理
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// 节点存在
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 该链为树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 该链为链表
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 写入
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 超过load factor*current capacity,resize
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
put函数大致的思路为:
hashCode() TREEIFY_THRESHOLD old value load factor*current capacity
当程序试图将一个 key-value 对放入 HashMap 中时,程序首先根据该 key的 hashCode() 返回值决定该 Entry 的存储位置:如果两个 Entry 的 key 的 hashCode() 返回值相同,那它们的存储位置相同。如果这两个 Entry 的 key 通过 equals 比较返回 true,新添加 Entry 的 value 将覆盖集合中原有 Entry的 value,但key不会覆盖。如果这两个 Entry 的 key 通过 equals 比较返回 false,新添加的 Entry 将与集合中原有 Entry 形成 Entry 链 ,而且新添加的 Entry 位于 Entry 链 的头部。
GET取出源码
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 直接命中
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 未命中
if ((e = first.next) != null) {
// 在树中get
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 在链表中get
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
首先计算 key 的 hashCode,找到数组中对应位置的某一元素,如果是第一个然后通过 key 的 equals 方法在对应位置的链表或者树中查找需要的元素。
简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据 hash 算法来决定其在数组中的存储位置,再根据 equals 方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry 时,也会根据 hash 算法找到其在数组中的存储位置,再根据 equals 方法从该位置上的链表中取出该Entry。
在get和put的过程中,计算下标时,先对hashCode进行hash操作,然后再通过hash值进一步计算下标,如下图所示:
在对hashCode()计算hash时具体实现是这样的:
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
可以看到这个函数大概的作用就是:高16bit不变,低16bit和高16bit做了一个异或。
当 HashMap 中的元素越来越多的时候,hash 冲突的几率也就越来越高,因为数组的长度是固定的。当 HashMap 中的元素个数超过 数组大小 *loadFactor 时,就会进行数组扩容, loadFactor 的默认值为 0.75,在resize的过程,简单的说就是把数组扩充为2倍,之后重新计算元素位置,把节点再放到新的数组中。resize的注释是这样描述的: 当超过限制的时候会resize,然而又因为我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。
例如我们从16扩展为32时,具体的变化如下所示:
能表示的范围*2,多了一字节的范围。因此元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色)。
因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”。
(h = k.hashCode()) ^ (h >>> 16) ,主要是从速度、功效、质量来考虑的,这么做可以在bucket的n比较小的时候,也能保证考虑到高低bit都参与到hash的计算中,同时不会有太大的开销。