Spring源码剖析5:JDK和cglib动态代理原理详解

本系列文章首发于我的个人博客https://h2pl.github.io/

欢迎阅览我的CSDN专栏:Spring源码解析 https://blog.csdn.net/column/details/21851.html

部分代码会放在我的的Github: https://github.com/h2pl/

://github.com/h2pl/

AOP的基础是Java动态代理,了解和使用两种动态代理能让我们更好地理解 AOP,在讲解AOP之前,让我们先来看看Java动态代理的使用方式以及底层实现原理。

转自 https://www.jianshu.com/u/668d0795a95b

本文是基于jdk1.8来对动态代理的底层机制进行探究的

Java中代理的实现一般分为三种:JDK静态代理、JDK动态代理以及CGLIB动态代理。在Spring的AOP实现中,主要应用了JDK动态代理以及CGLIB动态代理。但是本文着重介绍JDK动态代理机制,CGLIB动态代理后面会接着探究。

代理一般实现的模式为JDK静态代理:创建一个接口,然后创建被代理的类实现该接口并且实现该接口中的抽象方法。之后再创建一个代理类,同时使其也实现这个接口。在代理类中持有一个被代理对象的引用,而后在代理类方法中调用该对象的方法。

其实就是代理类为被代理类预处理消息、过滤消息并在此之后将消息转发给被代理类,之后还能进行消息的后置处理。代理类和被代理类通常会存在关联关系(即上面提到的持有的被带离对象的引用),代理类本身不实现服务,而是通过调用被代理类中的方法来提供服务。

Spring源码剖析5:JDK和cglib动态代理原理详解

接口

Spring源码剖析5:JDK和cglib动态代理原理详解

被代理类

Spring源码剖析5:JDK和cglib动态代理原理详解

代理类

Spring源码剖析5:JDK和cglib动态代理原理详解

测试类以及输出结果

我们可以看出,使用JDK静态代理很容易就完成了对一个类的代理操作。但是JDK静态代理的缺点也暴露了出来:由于代理只能为一个类服务,如果需要代理的类很多,那么就需要编写大量的代理类,比较繁琐。

下面我们使用JDK动态代理来做同样的事情

Spring源码剖析5:JDK和cglib动态代理原理详解

接口

Spring源码剖析5:JDK和cglib动态代理原理详解

被代理类

Spring源码剖析5:JDK和cglib动态代理原理详解

代理类

Spring源码剖析5:JDK和cglib动态代理原理详解

测试类以及输出结果

JDK动态代理其实也是基本接口实现的。因为通过接口指向实现类实例的多态方式,可以有效地将具体实现与调用解耦,便于后期的修改和维护。

通过上面的介绍,我们可以发现JDK静态代理与JDK动态代理之间有些许相似,比如说都要创建代理类,以及代理类都要实现接口等。但是不同之处也非常明显—-在静态代理中我们需要对哪个接口和哪个被代理类创建代理类,所以我们在编译前就需要代理类实现与被代理类相同的接口,并且直接在实现的方法中调用被代理类相应的方法;但是动态代理则不同,我们不知道要针对哪个接口、哪个被代理类创建代理类,因为它是在运行时被创建的。

让我们用一句话来总结一下JDK静态代理和JDK动态代理的区别,然后开始探究JDK动态代理的底层实现机制:

JDK静态代理是通过直接编码创建的,而JDK动态代理是利用反射机制在运行时创建代理类的。

其实在动态代理中,核心是InvocationHandler。每一个代理的实例都会有一个关联的调用处理程序(InvocationHandler)。对待代理实例进行调用时,将对方法的调用进行编码并指派到它的调用处理器(InvocationHandler)的invoke方法。所以对代理对象实例方法的调用都是通过InvocationHandler中的invoke方法来完成的,而invoke方法会根据传入的代理对象、方法名称以及参数决定调用代理的哪个方法。

我们从JDK动态代理的测试类中可以发现代理类生成是通过Proxy类中的newProxyInstance来完成的,下面我们进入这个函数看一看:

public static Object newProxyInstance(ClassLoader loader,
                                         Class<?>[] interfaces,
                                         InvocationHandler h)
       throws IllegalArgumentException
   {
       //如果h为空将抛出异常
       Objects.requireNonNull(h);

       final Class<?>[] intfs = interfaces.clone();//拷贝被代理类实现的一些接口,用于后面权限方面的一些检查
       final SecurityManager sm = System.getSecurityManager();
       if (sm != null) {
           //在这里对某些安全权限进行检查,确保我们有权限对预期的被代理类进行代理
           checkProxyAccess(Reflection.getCallerClass(), loader, intfs);
       }

       /*
        * 下面这个方法将产生代理类
        */
       Class<?> cl = getProxyClass0(loader, intfs);

       /*
        * 使用指定的调用处理程序获取代理类的构造函数对象
        */
       try {
           if (sm != null) {
               checkNewProxyPermission(Reflection.getCallerClass(), cl);
           }

           final Constructor<?> cons = cl.getConstructor(constructorParams);
           final InvocationHandler ih = h;
           //假如代理类的构造函数是private的,就使用反射来set accessible
           if (!Modifier.isPublic(cl.getModifiers())) {
               AccessController.doPrivileged(new PrivilegedAction<Void>() {
                   public Void run() {
                       cons.setAccessible(true);
                       return null;
                   }
               });
           }
           //根据代理类的构造函数来生成代理类的对象并返回
           return cons.newInstance(new Object[]{h});
       } catch (IllegalAccessException|InstantiationException e) {
           throw new InternalError(e.toString(), e);
       } catch (InvocationTargetException e) {
           Throwable t = e.getCause();
           if (t instanceof RuntimeException) {
               throw (RuntimeException) t;
           } else {
               throw new InternalError(t.toString(), t);
           }
       } catch (NoSuchMethodException e) {
           throw new InternalError(e.toString(), e);
       }
   }

所以代理类其实是通过getProxyClass方法来生成的:

/**
    * 生成一个代理类,但是在调用本方法之前必须进行权限检查
    */
   private static Class<?> getProxyClass0(ClassLoader loader,
                                          Class<?>... interfaces) {
       //如果接口数量大于65535,抛出非法参数错误
       if (interfaces.length > 65535) {
           throw new IllegalArgumentException("interface limit exceeded");
       }

       // 如果在缓存中有对应的代理类,那么直接返回
       // 否则代理类将有 ProxyClassFactory 来创建
       return proxyClassCache.get(loader, interfaces);
   }

那么ProxyClassFactory是什么呢?

/**
  *  里面有一个根据给定ClassLoader和Interface来创建代理类的工厂函数  
  *
  */
 private static final class ProxyClassFactory
     implements BiFunction<ClassLoader, Class<?>[], Class<?>>
 {
     // 代理类的名字的前缀统一为“$Proxy”
     private static final String proxyClassNamePrefix = "$Proxy";

     // 每个代理类前缀后面都会跟着一个唯一的编号,如$Proxy0、$Proxy1、$Proxy2
     private static final AtomicLong nextUniqueNumber = new AtomicLong();

     @Override
     public Class<?> apply(ClassLoader loader, Class<?>[] interfaces) {

         Map<Class<?>, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length);
         for (Class<?> intf : interfaces) {
             /*
              * 验证类加载器加载接口得到对象是否与由apply函数参数传入的对象相同
              */
             Class<?> interfaceClass = null;
             try {
                 interfaceClass = Class.forName(intf.getName(), false, loader);
             } catch (ClassNotFoundException e) {
             }
             if (interfaceClass != intf) {
                 throw new IllegalArgumentException(
                     intf + " is not visible from class loader");
             }
             /*
              * 验证这个Class对象是不是接口
              */
             if (!interfaceClass.isInterface()) {
                 throw new IllegalArgumentException(
                     interfaceClass.getName() + " is not an interface");
             }
             /*
              * 验证这个接口是否重复
              */
             if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) {
                 throw new IllegalArgumentException(
                     "repeated interface: " + interfaceClass.getName());
             }
         }

         String proxyPkg = null;     // 声明代理类所在的package
         int accessFlags = Modifier.PUBLIC | Modifier.FINAL;

         /*
          * 记录一个非公共代理接口的包,以便在同一个包中定义代理类。同时验证所有非公共
          * 代理接口都在同一个包中
          */
         for (Class<?> intf : interfaces) {
             int flags = intf.getModifiers();
             if (!Modifier.isPublic(flags)) {
                 accessFlags = Modifier.FINAL;
                 String name = intf.getName();
                 int n = name.lastIndexOf('.');
                 String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
                 if (proxyPkg == null) {
                     proxyPkg = pkg;
                 } else if (!pkg.equals(proxyPkg)) {
                     throw new IllegalArgumentException(
                         "non-public interfaces from different packages");
                 }
             }
         }

         if (proxyPkg == null) {
             // 如果全是公共代理接口,那么生成的代理类就在com.sun.proxy package下
             proxyPkg = ReflectUtil.PROXY_PACKAGE + ".";
         }

         /*
          * 为代理类生成一个name  package name + 前缀+唯一编号
          * 如 com.sun.proxy.$Proxy0.class
          */
         long num = nextUniqueNumber.getAndIncrement();
         String proxyName = proxyPkg + proxyClassNamePrefix + num;

         /*
          * 生成指定代理类的字节码文件
          */
         byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
             proxyName, interfaces, accessFlags);
         try {
             return defineClass0(loader, proxyName,
                                 proxyClassFile, 0, proxyClassFile.length);
         } catch (ClassFormatError e) {
             /*
              * A ClassFormatError here means that (barring bugs in the
              * proxy class generation code) there was some other
              * invalid aspect of the arguments supplied to the proxy
              * class creation (such as virtual machine limitations
              * exceeded).
              */
             throw new IllegalArgumentException(e.toString());
         }
     }
 }

由上方代码byte[] proxyClassFile = ProxyGenerator.generateProxyClass(proxyName, interfaces, accessFlags);可以看到,其实生成代理类字节码文件的工作是通过 ProxyGenerate类中的generateProxyClass方法来完成的。

public static byte[] generateProxyClass(final String var0, Class<?>[] var1, int var2) {
       ProxyGenerator var3 = new ProxyGenerator(var0, var1, var2);
      // 真正用来生成代理类字节码文件的方法在这里
       final byte[] var4 = var3.generateClassFile();
      // 保存代理类的字节码文件
       if(saveGeneratedFiles) {
           AccessController.doPrivileged(new PrivilegedAction() {
               public Void run() {
                   try {
                       int var1 = var0.lastIndexOf(46);
                       Path var2;
                       if(var1 > 0) {
                           Path var3 = Paths.get(var0.substring(0, var1).replace('.', File.separatorChar), 
                                                                                  new String[0]);
                           Files.createDirectories(var3, new FileAttribute[0]);
                           var2 = var3.resolve(var0.substring(var1 + 1, var0.length()) + ".class");
                       } else {
                           var2 = Paths.get(var0 + ".class", new String[0]);
                       }

                       Files.write(var2, var4, new OpenOption[0]);
                       return null;
                   } catch (IOException var4x) {
                       throw new InternalError("I/O exception saving generated file: " + var4x);
                   }
               }
           });
       }

       return var4;
   }

下面来看看真正用于生成代理类字节码文件的generateClassFile方法:

private byte[] generateClassFile() {
        //下面一系列的addProxyMethod方法是将接口中的方法和Object中的方法添加到代理方法中(proxyMethod)
        this.addProxyMethod(hashCodeMethod, Object.class);
        this.addProxyMethod(equalsMethod, Object.class);
        this.addProxyMethod(toStringMethod, Object.class);
        Class[] var1 = this.interfaces;
        int var2 = var1.length;

        int var3;
        Class var4;
       //获得接口中所有方法并添加到代理方法中
        for(var3 = 0; var3 < var2; ++var3) {
            var4 = var1[var3];
            Method[] var5 = var4.getMethods();
            int var6 = var5.length;

            for(int var7 = 0; var7 < var6; ++var7) {
                Method var8 = var5[var7];
                this.addProxyMethod(var8, var4);
            }
        }

        Iterator var11 = this.proxyMethods.values().iterator();
        //验证具有相同方法签名的方法的返回类型是否一致
        List var12;
        while(var11.hasNext()) {
            var12 = (List)var11.next();
            checkReturnTypes(var12);
        }

        //后面一系列的步骤用于写代理类Class文件
        Iterator var15;
        try {
             //生成代理类的构造函数
            this.methods.add(this.generateConstructor());
            var11 = this.proxyMethods.values().iterator();

            while(var11.hasNext()) {
                var12 = (List)var11.next();
                var15 = var12.iterator();

                while(var15.hasNext()) {
                    ProxyGenerator.ProxyMethod var16 = (ProxyGenerator.ProxyMethod)var15.next();
                    //将代理类字段声明为Method,并且字段修饰符为 private static.
                   //因为 10 是 ACC_PRIVATE和ACC_STATIC的与运算 故代理类的字段都是 private static Method ***
                    this.fields.add(new ProxyGenerator.FieldInfo(var16.methodFieldName, 
                                   "Ljava/lang/reflect/Method;", 10));
                   //生成代理类的方法
                    this.methods.add(var16.generateMethod());
                }
            }
           //为代理类生成静态代码块对某些字段进行初始化
            this.methods.add(this.generateStaticInitializer());
        } catch (IOException var10) {
            throw new InternalError("unexpected I/O Exception", var10);
        }

        if(this.methods.size() > '/uffff') { //代理类中的方法数量超过65535就抛异常
            throw new IllegalArgumentException("method limit exceeded");
        } else if(this.fields.size() > '/uffff') {// 代理类中字段数量超过65535也抛异常
            throw new IllegalArgumentException("field limit exceeded");
        } else {
            // 后面是对文件进行处理的过程
            this.cp.getClass(dotToSlash(this.className));
            this.cp.getClass("java/lang/reflect/Proxy");
            var1 = this.interfaces;
            var2 = var1.length;

            for(var3 = 0; var3 < var2; ++var3) {
                var4 = var1[var3];
                this.cp.getClass(dotToSlash(var4.getName()));
            }

            this.cp.setReadOnly();
            ByteArrayOutputStream var13 = new ByteArrayOutputStream();
            DataOutputStream var14 = new DataOutputStream(var13);

            try {
                var14.writeInt(-889275714);
                var14.writeShort(0);
                var14.writeShort(49);
                this.cp.write(var14);
                var14.writeShort(this.accessFlags);
                var14.writeShort(this.cp.getClass(dotToSlash(this.className)));
                var14.writeShort(this.cp.getClass("java/lang/reflect/Proxy"));
                var14.writeShort(this.interfaces.length);
                Class[] var17 = this.interfaces;
                int var18 = var17.length;

                for(int var19 = 0; var19 < var18; ++var19) {
                    Class var22 = var17[var19];
                    var14.writeShort(this.cp.getClass(dotToSlash(var22.getName())));
                }

                var14.writeShort(this.fields.size());
                var15 = this.fields.iterator();

                while(var15.hasNext()) {
                    ProxyGenerator.FieldInfo var20 = (ProxyGenerator.FieldInfo)var15.next();
                    var20.write(var14);
                }

                var14.writeShort(this.methods.size());
                var15 = this.methods.iterator();

                while(var15.hasNext()) {
                    ProxyGenerator.MethodInfo var21 = (ProxyGenerator.MethodInfo)var15.next();
                    var21.write(var14);
                }

                var14.writeShort(0);
                return var13.toByteArray();
            } catch (IOException var9) {
                throw new InternalError("unexpected I/O Exception", var9);
            }
        }
    }

下面是将接口与Object中一些方法添加到代理类中的addProxyMethod方法:

private void addProxyMethod(Method var1, Class<?> var2) {
        String var3 = var1.getName();//获得方法名称
        Class[] var4 = var1.getParameterTypes();//获得方法参数类型
        Class var5 = var1.getReturnType();//获得方法返回类型
        Class[] var6 = var1.getExceptionTypes();//异常类型
        String var7 = var3 + getParameterDescriptors(var4);//获得方法签名
        Object var8 = (List)this.proxyMethods.get(var7);//根据方法前面获得proxyMethod的value
        if(var8 != null) {//处理多个代理接口中方法重复的情况
            Iterator var9 = ((List)var8).iterator();

            while(var9.hasNext()) {
                ProxyGenerator.ProxyMethod var10 = (ProxyGenerator.ProxyMethod)var9.next();
                if(var5 == var10.returnType) {
                    ArrayList var11 = new ArrayList();
                    collectCompatibleTypes(var6, var10.exceptionTypes, var11);
                    collectCompatibleTypes(var10.exceptionTypes, var6, var11);
                    var10.exceptionTypes = new Class[var11.size()];
                    var10.exceptionTypes = (Class[])var11.toArray(var10.exceptionTypes);
                    return;
                }
            }
        } else {
            var8 = new ArrayList(3);
            this.proxyMethods.put(var7, var8);
        }

        ((List)var8).add(new ProxyGenerator.ProxyMethod(var3, var4, var5, var6, var2, null));
    }

这就是最终真正的代理类,它继承自Proxy并实现了我们定义的Subject接口。我们通过

HelloInterface helloInterface = (HelloInterface ) Proxy.newProxyInstance(loader, interfaces, handler);

得到的最终代理类对象就是上面这个类的实例。那么我们执行如下语句:

helloInterface.hello("Tom");

实际上就是执行上面类的相应方法,也就是:

public final void hello(String paramString)
 {
   try
   {
     this.h.invoke(this, m3, new Object[] { paramString });
     //就是调用我们自定义的InvocationHandlerImpl的 invoke方法:
     return;
   }
   catch (Error|RuntimeException localError)
   {
     throw localError;
   }
   catch (Throwable localThrowable)
   {
     throw new UndeclaredThrowableException(localThrowable);
   }
 }

注意这里的 this.h.invoke 中的h,它是类Proxy中的一个属性

protected InvocationHandler h;

因为这个代理类继承了Proxy,所以也就继承了这个属性,而这个属性值就是我们定义的

InvocationHandler handler = new InvocationHandlerImpl(hello);

同时我们还发现,invoke方法的第一参数在底层调用的时候传入的是 this ,也就是最终生成的代理对象ProxySubject,这是JVM自己动态生成的,而不是我们自己定义的代理对象。

深入理解CGLIB动态代理机制

Cglib是什么

Cglib是一个强大的、高性能的代码生成包,它广泛被许多AOP框架使用,为他们提供方法的拦截。下图是我网上找到的一张Cglib与一些框架和语言的关系:

Spring源码剖析5:JDK和cglib动态代理原理详解

对此图总结一下:

  • 最底层的是字节码Bytecode,字节码是Java为了保证“一次编译、到处运行”而产生的一种虚拟指令格式,例如iload_0、iconst_1、if_icmpne、dup等
  • 位于字节码之上的是ASM,这是一种直接操作字节码的框架,应用ASM需要对Java字节码、Class结构比较熟悉
  • 位于ASM之上的是CGLIB、Groovy、BeanShell,后两种并不是Java体系中的内容而是脚本语言,它们通过ASM框架生成字节码变相执行Java代码,这说明在JVM中执行程序并不一定非要写Java代码—-只要你能生成Java字节码,JVM并不关心字节码的来源,当然通过Java代码生成的JVM字节码是通过编译器直接生成的,算是最“正统”的JVM字节码
  • 位于CGLIB、Groovy、BeanShell之上的就是Hibernate、Spring AOP这些框架了,这一层大家都比较熟悉
  • 最上层的是Applications,即具体应用,一般都是一个Web项目或者本地跑一个程序

本文是基于CGLIB 3.1进行探究的

cglib is a powerful, high performance and quality Code Generation Library, It is used to extend JAVA classes and implements interfaces at runtime.

在Spring AOP中,通常会用它来生成AopProxy对象。不仅如此,在Hibernate中PO(Persistant Object 持久化对象)字节码的生成工作也要靠它来完成。

本文将深入探究CGLIB动态代理的实现机制,配合下面这篇文章一起食用口味更佳:

深入理解JDK动态代理机制

一、CGLIB动态代理示例

下面由一个简单的示例开始我们对CGLIB动态代理的介绍:

Spring源码剖析5:JDK和cglib动态代理原理详解

为了后续编码的顺利进行,我们需要使用Maven引入CGLIB的包

Spring源码剖析5:JDK和cglib动态代理原理详解

图1.1 被代理类

Spring源码剖析5:JDK和cglib动态代理原理详解

图1.2 实现MethodInterceptor接口生成方法拦截器

Spring源码剖析5:JDK和cglib动态代理原理详解

图1.3 生成代理类对象并打印在代理类对象调用方法之后的执行结果

JDK代理要求被代理的类必须实现接口,有很强的局限性。而CGLIB动态代理则没有此类强制性要求。简单的说,CGLIB会让生成的代理类继承被代理类,并在代理类中对代理方法进行强化处理(前置处理、后置处理等)。在CGLIB底层,其实是借助了ASM这个非常强大的Java字节码生成框架。

二、生成代理类对象

从图1.3中我们看到,代理类对象是由Enhancer类创建的。Enhancer是CGLIB的字节码增强器,可以很方便的对类进行拓展,如图1.3中的为类设置Superclass。

创建代理对象的几个步骤:

  • 生成代理类的二进制字节码文件;
  • 加载二进制字节码,生成Class对象( 例如使用Class.forName()方法 );
  • 通过反射机制获得实例构造,并创建代理类对象

我们来看看将代理类Class文件反编译之后的Java代码

package proxy;

import java.lang.reflect.Method;
import net.sf.cglib.core.ReflectUtils;
import net.sf.cglib.core.Signature;
import net.sf.cglib.proxy.Callback;
import net.sf.cglib.proxy.Factory;
import net.sf.cglib.proxy.MethodInterceptor;
import net.sf.cglib.proxy.MethodProxy;

public class HelloServiceImpl$EnhancerByCGLIB$82ef2d06
  extends HelloServiceImpl
  implements Factory
{
  private boolean CGLIB$BOUND;
  private static final ThreadLocal CGLIB$THREAD_CALLBACKS;
  private static final Callback[] CGLIB$STATIC_CALLBACKS;
  private MethodInterceptor CGLIB$CALLBACK_0;
  private static final Method CGLIB$sayHello$0$Method;
  private static final MethodProxy CGLIB$sayHello$0$Proxy;
  private static final Object[] CGLIB$emptyArgs;
  private static final Method CGLIB$finalize$1$Method;
  private static final MethodProxy CGLIB$finalize$1$Proxy;
  private static final Method CGLIB$equals$2$Method;
  private static final MethodProxy CGLIB$equals$2$Proxy;
  private static final Method CGLIB$toString$3$Method;
  private static final MethodProxy CGLIB$toString$3$Proxy;
  private static final Method CGLIB$hashCode$4$Method;
  private static final MethodProxy CGLIB$hashCode$4$Proxy;
  private static final Method CGLIB$clone$5$Method;
  private static final MethodProxy CGLIB$clone$5$Proxy;

  static void CGLIB$STATICHOOK1()
  {
    CGLIB$THREAD_CALLBACKS = new ThreadLocal();
    CGLIB$emptyArgs = new Object[0];
    Class localClass1 = Class.forName("proxy.HelloServiceImpl$EnhancerByCGLIB$82ef2d06");
    Class localClass2;
    Method[] tmp95_92 = ReflectUtils.findMethods(new String[] { "finalize", "()V", "equals", "(Ljava/lang/Object;)Z", "toString", "()Ljava/lang/String;", "hashCode", "()I", "clone", "()Ljava/lang/Object;" }, (localClass2 = Class.forName("java.lang.Object")).getDeclaredMethods());
    CGLIB$finalize$1$Method = tmp95_92[0];
    CGLIB$finalize$1$Proxy = MethodProxy.create(localClass2, localClass1, "()V", "finalize", "CGLIB$finalize$1");
    Method[] tmp115_95 = tmp95_92;
    CGLIB$equals$2$Method = tmp115_95[1];
    CGLIB$equals$2$Proxy = MethodProxy.create(localClass2, localClass1, "(Ljava/lang/Object;)Z", "equals", "CGLIB$equals$2");
    Method[] tmp135_115 = tmp115_95;
    CGLIB$toString$3$Method = tmp135_115[2];
    CGLIB$toString$3$Proxy = MethodProxy.create(localClass2, localClass1, "()Ljava/lang/String;", "toString", "CGLIB$toString$3");
    Method[] tmp155_135 = tmp135_115;
    CGLIB$hashCode$4$Method = tmp155_135[3];
    CGLIB$hashCode$4$Proxy = MethodProxy.create(localClass2, localClass1, "()I", "hashCode", "CGLIB$hashCode$4");
    Method[] tmp175_155 = tmp155_135;
    CGLIB$clone$5$Method = tmp175_155[4];
    CGLIB$clone$5$Proxy = MethodProxy.create(localClass2, localClass1, "()Ljava/lang/Object;", "clone", "CGLIB$clone$5");
    tmp175_155;
    Method[] tmp223_220 = ReflectUtils.findMethods(new String[] { "sayHello", "()V" }, (localClass2 = Class.forName("proxy.HelloServiceImpl")).getDeclaredMethods());
    CGLIB$sayHello$0$Method = tmp223_220[0];
    CGLIB$sayHello$0$Proxy = MethodProxy.create(localClass2, localClass1, "()V", "sayHello", "CGLIB$sayHello$0");
    tmp223_220;
    return;
  }

  final void CGLIB$sayHello$0()
  {
    super.sayHello();
  }

  public final void sayHello()
  {
    MethodInterceptor tmp4_1 = this.CGLIB$CALLBACK_0;
    if (tmp4_1 == null)
    {
      tmp4_1;
      CGLIB$BIND_CALLBACKS(this);
    }
    if (this.CGLIB$CALLBACK_0 != null) {
      return;
    }
    super.sayHello();
  }

  final void CGLIB$finalize$1()
    throws Throwable
  {
    super.finalize();
  }

  protected final void finalize()
    throws Throwable
  {
    MethodInterceptor tmp4_1 = this.CGLIB$CALLBACK_0;
    if (tmp4_1 == null)
    {
      tmp4_1;
      CGLIB$BIND_CALLBACKS(this);
    }
    if (this.CGLIB$CALLBACK_0 != null) {
      return;
    }
    super.finalize();
  }

  final boolean CGLIB$equals$2(Object paramObject)
  {
    return super.equals(paramObject);
  }

  public final boolean equals(Object paramObject)
  {
    MethodInterceptor tmp4_1 = this.CGLIB$CALLBACK_0;
    if (tmp4_1 == null)
    {
      tmp4_1;
      CGLIB$BIND_CALLBACKS(this);
    }
    MethodInterceptor tmp17_14 = this.CGLIB$CALLBACK_0;
    if (tmp17_14 != null)
    {
      Object tmp41_36 = tmp17_14.intercept(this, CGLIB$equals$2$Method, new Object[] { paramObject }, CGLIB$equals$2$Proxy);
      tmp41_36;
      return tmp41_36 == null ? false : ((Boolean)tmp41_36).booleanValue();
    }
    return super.equals(paramObject);
  }

  final String CGLIB$toString$3()
  {
    return super.toString();
  }

  public final String toString()
  {
    MethodInterceptor tmp4_1 = this.CGLIB$CALLBACK_0;
    if (tmp4_1 == null)
    {
      tmp4_1;
      CGLIB$BIND_CALLBACKS(this);
    }
    MethodInterceptor tmp17_14 = this.CGLIB$CALLBACK_0;
    if (tmp17_14 != null) {
      return (String)tmp17_14.intercept(this, CGLIB$toString$3$Method, CGLIB$emptyArgs, CGLIB$toString$3$Proxy);
    }
    return super.toString();
  }

  final int CGLIB$hashCode$4()
  {
    return super.hashCode();
  }

  public final int hashCode()
  {
    MethodInterceptor tmp4_1 = this.CGLIB$CALLBACK_0;
    if (tmp4_1 == null)
    {
      tmp4_1;
      CGLIB$BIND_CALLBACKS(this);
    }
    MethodInterceptor tmp17_14 = this.CGLIB$CALLBACK_0;
    if (tmp17_14 != null)
    {
      Object tmp36_31 = tmp17_14.intercept(this, CGLIB$hashCode$4$Method, CGLIB$emptyArgs, CGLIB$hashCode$4$Proxy);
      tmp36_31;
      return tmp36_31 == null ? 0 : ((Number)tmp36_31).intValue();
    }
    return super.hashCode();
  }

  final Object CGLIB$clone$5()
    throws CloneNotSupportedException
  {
    return super.clone();
  }

  protected final Object clone()
    throws CloneNotSupportedException
  {
    MethodInterceptor tmp4_1 = this.CGLIB$CALLBACK_0;
    if (tmp4_1 == null)
    {
      tmp4_1;
      CGLIB$BIND_CALLBACKS(this);
    }
    MethodInterceptor tmp17_14 = this.CGLIB$CALLBACK_0;
    if (tmp17_14 != null) {
      return tmp17_14.intercept(this, CGLIB$clone$5$Method, CGLIB$emptyArgs, CGLIB$clone$5$Proxy);
    }
    return super.clone();
  }

  public static MethodProxy CGLIB$findMethodProxy(Signature paramSignature)
  {
    String tmp4_1 = paramSignature.toString();
    switch (tmp4_1.hashCode())
    {
    case -1574182249: 
      if (tmp4_1.equals("finalize()V")) {
        return CGLIB$finalize$1$Proxy;
      }
      break;
    }
  }

  public HelloServiceImpl$EnhancerByCGLIB$82ef2d06()
  {
    CGLIB$BIND_CALLBACKS(this);
  }

  public static void CGLIB$SET_THREAD_CALLBACKS(Callback[] paramArrayOfCallback)
  {
    CGLIB$THREAD_CALLBACKS.set(paramArrayOfCallback);
  }

  public static void CGLIB$SET_STATIC_CALLBACKS(Callback[] paramArrayOfCallback)
  {
    CGLIB$STATIC_CALLBACKS = paramArrayOfCallback;
  }

  private static final void CGLIB$BIND_CALLBACKS(Object paramObject)
  {
    82ef2d06 local82ef2d06 = (82ef2d06)paramObject;
    if (!local82ef2d06.CGLIB$BOUND)
    {
      local82ef2d06.CGLIB$BOUND = true;
      Object tmp23_20 = CGLIB$THREAD_CALLBACKS.get();
      if (tmp23_20 == null)
      {
        tmp23_20;
        CGLIB$STATIC_CALLBACKS;
      }
      local82ef2d06.CGLIB$CALLBACK_0 = (// INTERNAL ERROR //

三、对委托类进行代理

我们上面贴出了生成的代理类源码。以我们上面的例子为参考,下面我们总结一下CGLIB在进行代理的时候都进行了哪些工作呢

  • 生成的代理类HelloServiceImpl$EnhancerByCGLIB$82ef2d06继承被代理类HelloServiceImpl。在这里我们需要注意一点:如果委托类被final修饰,那么它不可被继承,即不可被代理;同样,如果委托类中存在final修饰的方法,那么该方法也不可被代理;
  • 代理类会为委托方法生成两个方法,一个是重写的sayHello方法,另一个是CGLIB$sayHello$0方法,我们可以看到它是直接调用父类的sayHello方法;
  • 当执行代理对象的sayHello方法时,会首先判断一下是否存在实现了MethodInterceptor接口的CGLIB$CALLBACK_0;,如果存在,则将调用MethodInterceptor中的intercept方法,如图2.1。

Spring源码剖析5:JDK和cglib动态代理原理详解

图2.1 intercept方法

Spring源码剖析5:JDK和cglib动态代理原理详解

图2.2 代理类为每个委托方法都会生成两个方法

在intercept方法中,我们除了会调用委托方法,还会进行一些增强操作。在Spring AOP中,典型的应用场景就是在某些敏感方法执行前后进行操作日志记录。

我们从图2.1中看到,调用委托方法是通过代理方法的MethodProxy对象调用invokeSuper方法来执行的,下面我们看看invokeSuper方法中的玄机:

Spring源码剖析5:JDK和cglib动态代理原理详解

图2.3 invokeSuper方法

在这里好像不能直接看出代理方法的调用。没关系,我会慢慢介绍。

我们知道,在JDK动态代理中方法的调用是通过反射来完成的。如果有对此不太了解的同学,可以看下我之前的博客—- 深入理解JDK动态代理机制 。但是在CGLIB中,方法的调用并不是通过反射来完成的,而是直接对方法进行调用:FastClass对Class对象进行特别的处理,比如将会用数组保存method的引用,每次调用方法的时候都是通过一个index下标来保持对方法的引用。比如下面的getIndex方法就是通过方法签名来获得方法在存储了Class信息的数组中的下标。

Spring源码剖析5:JDK和cglib动态代理原理详解

图2.4 getIndex方法

Spring源码剖析5:JDK和cglib动态代理原理详解

图2.5 FastClassInfo类中持有两个FastClass对象的引用.png

以我们上面的sayHello方法为例,f1指向委托类对象,f2指向代理类对象,i1和i2分别代表着sayHello方法以及CGLIB$sayHello$0方法在对象信息数组中的下标。

到此为止CGLIB动态代理机制就介绍完了,下面给出三种代理方式之间对比。

代理方式 实现 优点 缺点 特点
JDK静态代理 代理类与委托类实现同一接口,并且在代理类中需要硬编码接口 实现简单,容易理解 代理类需要硬编码接口,在实际应用中可能会导致重复编码,浪费存储空间并且效率很低 好像没啥特点
JDK动态代理 代理类与委托类实现同一接口,主要是通过代理类实现InvocationHandler并重写invoke方法来进行动态代理的,在invoke方法中将对方法进行增强处理 不需要硬编码接口,代码复用率高 只能够代理实现了接口的委托类 底层使用反射机制进行方法的调用
CGLIB动态代理 代理类将委托类作为自己的父类并为其中的非final委托方法创建两个方法,一个是与委托方法签名相同的方法,它在方法中会通过super调用委托方法;另一个是代理类独有的方法。在代理方法中,它会判断是否存在实现了MethodInterceptor接口的对象,若存在则将调用intercept方法对委托方法进行代理 可以在运行时对类或者是接口进行增强操作,且委托类无需实现接口 不能对final类以及final方法进行代理 底层将方法全部存入一个数组中,通过数组索引直接进行方法调用

原文 

http://h2pl.github.io/2018/06/03/spring5/

本站部分文章源于互联网,本着传播知识、有益学习和研究的目的进行的转载,为网友免费提供。如有著作权人或出版方提出异议,本站将立即删除。如果您对文章转载有任何疑问请告之我们,以便我们及时纠正。

PS:推荐一个微信公众号: askHarries 或者qq群:474807195,里面会分享一些资深架构师录制的视频录像:有Spring,MyBatis,Netty源码分析,高并发、高性能、分布式、微服务架构的原理,JVM性能优化这些成为架构师必备的知识体系。还能领取免费的学习资源,目前受益良多

转载请注明原文出处:Harries Blog™ » Spring源码剖析5:JDK和cglib动态代理原理详解

赞 (0)
分享到:更多 ()

评论 0

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址