众所周知,RxJava2 中当链式调用中抛出异常时,如果没有对应的 Consumer 去处理异常,则这个异常会被抛出到虚拟机中去,Android 上的直接表现就是 crash,程序崩溃。
说异常处理前咱们先来看一下 RxJava2 中		Observable
订阅方法		subscribe()
我们常用的几种订阅方式:	
// 1 subscribe() // 2 Disposable subscribe(Consumer<? super T> onNext) // 3 Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError) // 4 Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError,Action onComplete) // 5 Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError,Action onComplete, Consumer<? super Disposable> onSubscribe) // 6 void subscribe(Observer<? super T> observer) 复制代码
无参和以		Consumer
为参数的几种方法内部都是以默认参数补齐的方式最终调用第		5
个方法,而方法		5
内部通过 LambdaObserver 将参数包装成 Observer 再调用第		6
个方法	
public final Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError,
            Action onComplete, Consumer<? super Disposable> onSubscribe) {
        ObjectHelper.requireNonNull(onNext, "onNext is null");
        ObjectHelper.requireNonNull(onError, "onError is null");
        ObjectHelper.requireNonNull(onComplete, "onComplete is null");
        ObjectHelper.requireNonNull(onSubscribe, "onSubscribe is null");
        LambdaObserver<T> ls = new LambdaObserver<T>(onNext, onError, onComplete, onSubscribe);
        subscribe(ls);
        return ls;
    }
复制代码
	
所以使用		Consumer
参数方式和		Observer
参数方式进行订阅除了观察回调来源不一样其他没有任何差别。但就是因为这种差别,在异常情况发生时的处理结果上也会产生差别	
我们分别进行一下几种方式模拟异常:
apiService.newJsonKeyData()
                    .doOnSubscribe { t -> compositeDisposable.add(t) }
                    .compose(RxScheduler.sync()) // 封装的线程切换
                    .subscribe(object : Observer<List<ZooData>> {
                        override fun onComplete() {
                        }
                        override fun onSubscribe(d: Disposable) {
                        }
                        override fun onNext(t: List<ZooData>) {
                            throw RuntimeException("runtime exception")
                        }
                        override fun onError(e: Throwable) {
                            Log.d("error", e.message)
                        }
                    })
复制代码
	
		结果:不会触发 onError,App 崩溃
	
Observable.create<String> {
                        it.onNext("ssss")
                    }
                            .subscribe(object : Observer<String> {
                                override fun onComplete() {
                                }
                                override fun onSubscribe(d: Disposable) {
                                }
                                override fun onNext(t: String) {
                                    Log.d("result::", t)
                                    throw RuntimeException("run llllll")
                                }
                                override fun onError(e: Throwable) {
                                    Log.e("sss", "sss", e)
                                }
                            })
复制代码
	
		结果:会触发 onError,App 未崩溃
	
apiService.newJsonKeyData()
                    .doOnSubscribe { t -> compositeDisposable.add(t) }
                    .map {
                        throw RuntimeException("runtime exception")
                    }
                    .compose(RxScheduler.sync())
                    .subscribe(object : Observer<List<ZooData>> {
                        override fun onComplete() {
                        }
                        override fun onSubscribe(d: Disposable) {
                        }
                        override fun onNext(t: List<ZooData>) {
                        }
                        override fun onError(e: Throwable) {
                            Log.d("error", e.message)
                        }
                    })
复制代码
	
		结果:会触发 Observer 的 onError,App 未崩溃
	
apiService.newJsonKeyData()
                    .doOnSubscribe { t -> compositeDisposable.add(t) }
                    .compose(RxScheduler.sync())
                    .subscribe({
                        throw RuntimeException("messsasassssssssssssssssssssssssssssssssssssss")
                    }, {
                        Log.d("Error", it.message)
                    })
复制代码
	
		结果 A:有 errorConsumer 触发 errorConsumer,App 未崩溃
	
apiService.newJsonKeyData()
                    .doOnSubscribe { t -> compositeDisposable.add(t) }
                    .compose(RxScheduler.sync())
                    .subscribe {
                        throw RuntimeException("messsasassssssssssssssssssssssssssssssssssssss")
                    }
复制代码
	
		结果 B:无 errorConsumer,App 崩溃
	
那么为什么会出现这些不同情况呢?我们从源码中去一探究竟。
		subscribe()
传入 consumer 类型参数最终在		Observable
中会将传入的参数转换为		LambdaObserver
再调用		subscribe(lambdaObserver)
进行订阅。展开		LambdaObserver
:(主要看 onNext 和 onError 方法中的处理)	
.
		.
		.
		    @Override
    public void onNext(T t) {
        if (!isDisposed()) {
            try {
                onNext.accept(t);
            } catch (Throwable e) {
                Exceptions.throwIfFatal(e);
                get().dispose();
                onError(e);
            }
        }
    }
    @Override
    public void onError(Throwable t) {
        if (!isDisposed()) {
            lazySet(DisposableHelper.DISPOSED);
            try {
                onError.accept(t);
            } catch (Throwable e) {
                Exceptions.throwIfFatal(e);
                RxJavaPlugins.onError(new CompositeException(t, e));
            }
        } else {
            RxJavaPlugins.onError(t);
        }
    }
		.
		.
		.
复制代码
	
		onNext
中调用了对应 consumer 的		apply()
方法,并且进行了 try catch。因此我们在 consumer 中进行的工作抛出异常会被捕获触发 LambdaObserver 的		onError
。再看		onError
中,如果订阅未取消且 errorConsumer 的		apply()
执行无异常则能正常走完事件流,否则会调用		RxJavaPlugins.onError(t)
。看到这里应该就能明白了,当订阅时未传入 errorConsumer时		Observable
会指定		OnErrorMissingConsumer
为默认的 errorConsumer,发生异常时抛出		OnErrorNotImplementedException
。	
上面分析,发现异常最终会流向 RxJavaPlugins.onError(t)。这个方法为 RxJava2 提供的一个全局的静态方法。
public static void onError(@NonNull Throwable error) {
        Consumer<? super Throwable> f = errorHandler;
        if (error == null) {
            error = new NullPointerException("onError called with null. Null values are generally not allowed in 2.x operators and sources.");
        } else {
            if (!isBug(error)) {
                error = new UndeliverableException(error);
            }
        }
        if (f != null) {
            try {
                f.accept(error);
                return;
            } catch (Throwable e) {
                // Exceptions.throwIfFatal(e); TODO decide
                e.printStackTrace(); // NOPMD
                uncaught(e);
            }
        }
        error.printStackTrace(); // NOPMD
        uncaught(error);
    }
复制代码
	
查看其源码发现,当		errorHandler
不为空时异常将由其消耗掉,为空或者消耗过程产生新的异常则 RxJava 会将异常抛给虚拟机(可能导致程序崩溃)。		errorHandler
本身是一个 Consumer 对象,我们可以通过如下方式配置他:	
RxJavaPlugins.setErrorHandler(object : Consumer1<Throwable> {
        override fun accept(t: Throwable?) {
            TODO("not implemented") //To change body of created functions use File | Settings | File Templates.
        }
    })
复制代码
	
以 map 操作符为例,map 操作符实际上 RxJava 是将事件流 hook 了另一个新的 Observable		ObservableMap
	
@CheckReturnValue
    @SchedulerSupport(SchedulerSupport.NONE)
    public final <R> Observable<R> map(Function<? super T, ? extends R> mapper) {
        ObjectHelper.requireNonNull(mapper, "mapper is null");
        return RxJavaPlugins.onAssembly(new ObservableMap<T, R>(this, mapper));
    }
复制代码
	
进入 ObservableMap 类,发现内部订阅了一个内部静态类		MapObserver
,重点看		MapObserver
的		onNext
方法	
public void onNext(T t) {
            if (done) {
                return;
            }
            if (sourceMode != NONE) {
                downstream.onNext(null);
                return;
            }
            U v;
            try {
                v = ObjectHelper.requireNonNull(mapper.apply(t), "The mapper function returned a null value.");
            } catch (Throwable ex) {
                fail(ex);
                return;
            }
            downstream.onNext(v);
        }
复制代码
	
		onNext
中 try catch 了 mapper.apply(),这个 apply 执行的就是我们在操作符中实现的		function
方法。因此在 map 之类数据变换操作符中产生异常能够自身捕获并发送给最终的 Observer。如果此时的订阅对象中能消耗掉异常则事件流正常走		onError()
结束,如果订阅方式为上以节中的 consumer,则崩溃情况为上一节中的分析结果。	
上述的方式		1
为一次网络请求,里面涉及到线程的切换。方式		2
为直接 create 一个		Observable
对象,不涉及线程切换,其结果为线程切换后,观察者 Observer 的 onNext() 方法中抛出异常无法触发 onError(),程序崩溃。	
查看		create()
方法源码,发现内部创建了一个		ObservableCreate
对象,在调用订阅时会触发		subscribeActual()
方法。在		subscribeActual()
中再调用我们 create 时传入的		ObservableOnSubscribe
对象的		subscribe()
方法来触发事件流。	
@Override
    protected void subscribeActual(Observer<? super T> observer) {
	
		// 对我们的观察者使用 CreateEmitter 进行包装,内部的触发方法是相对应的
        CreateEmitter<T> parent = new CreateEmitter<T>(observer);
        observer.onSubscribe(parent);
        try {
			// source 为 create 时创建的 ObservableOnSubscribe 匿名内部接口实现类
            source.subscribe(parent);
        } catch (Throwable ex) {
            Exceptions.throwIfFatal(ex);
            parent.onError(ex);
        }
    }
复制代码
	上述代码中的订阅过程是使用 try catch 今夕包裹的。订阅及订阅触发后发送的事件流都在一个线程,所以能够捕获整个事件流中的异常。(PS : 大家可以尝试下使用 observeOn() 切换事件发送线程。会发现异常不能再捕获,程序崩溃)
Retrofit 进行网络请求返回的 Observable 对象实质上是		RxJava2CallAdapter
中生成的		BodyObservable
,期内部的		onNext
是没有进行异常捕获的。其实这里是否捕获并不是程序崩溃的根本原因,因为进行网络请求,必然是涉及到线程切换的。就算此处 try catch 处理了,也并不能捕获到事件流下游的异常。	
@Override public void onNext(Response<R> response) {
      if (response.isSuccessful()) {
        observer.onNext(response.body());
      } else {
        terminated = true;
        Throwable t = new HttpException(response);
        try {
          observer.onError(t);
        } catch (Throwable inner) {
          Exceptions.throwIfFatal(inner);
          RxJavaPlugins.onError(new CompositeException(t, inner));
        }
      }
    }
复制代码
	
以我们在最终的 Observer 的 onNext 抛出异常为例,要捕获这次异常那么必须在最终的调用线程中去进行捕获。即		.observeOn(AndroidSchedulers.mainThread())
切换过来的 Android 主线程。与其他操作符一样,线程切换时产生了一组新的订阅关系,RxJava 内部会创建一个新的观察对象		ObservableObserveOn
。	
@Override
        public void onNext(T t) {
            if (done) {
                return;
            }
            if (sourceMode != QueueDisposable.ASYNC) {
                queue.offer(t);
            }
            schedule();
        }
		.
		.
		.
		void schedule() {
            if (getAndIncrement() == 0) {
                worker.schedule(this); // 执行 ObservableObserveOn 的 run 方法
            }
        }
		.
		.
		.
	      @Override
        public void run() {
            if (outputFused) {
                drainFused();
            } else {
                drainNormal();
            }
        }
	
复制代码
	
而执行任务的 worker 即为对应线程 Scheduler 的对应实现子类所创建的 Worker,以		AndroidSchedulers.mainThread()
为例,Scheduler 实现类为		HandlerScheduler
,其对应 Worker 为		HandlerWorker
,最终任务交给		ScheduledRunnable
来执行。	
private static final class ScheduledRunnable implements Runnable, Disposable {
        private final Handler handler;
        private final Runnable delegate;
        private volatile boolean disposed; // Tracked solely for isDisposed().
        ScheduledRunnable(Handler handler, Runnable delegate) {
            this.handler = handler;
            this.delegate = delegate;
        }
        @Override
        public void run() {
            try {
                delegate.run();
            } catch (Throwable t) {
                RxJavaPlugins.onError(t);
            }
        }
        @Override
        public void dispose() {
            handler.removeCallbacks(this);
            disposed = true;
        }
        @Override
        public boolean isDisposed() {
            return disposed;
        }
    }
复制代码
	
会发现,run 中 进行了 try catch。但 catch 内消化异常使用的是全局异常处理		RxJavaPlugins.onError(t);
,而不是某一个观察者的		onError
。所以在经过切换线程操作符后,观察者 onNext 中抛出的异常,onError 无法捕获。	
既然知道了问题所在,那么处理问题的方案也就十分清晰了。 1、注册全局的异常处理
RxJavaPlugins.setErrorHandler(object : Consumer<Throwable> {
            override fun accept(t: Throwable?) {
                // do something   
            }
        })
复制代码
	2、Consumer 作为观察者时,不完全确定没有异常一定要添加异常处理 Consumer
apiService.stringData()
                    .doOnSubscribe { t -> compositeDisposable.add(t) }
                    .compose(RxScheduler.sync())
                    .subscribe(Consumer<Boolean>{ }, Consumer<Throwable> { })
复制代码
	3、Observer 可以创建一个 BaseObaerver 将 onNext 内部进行 try catch 人为的流转到 onError 中,项目中的观察这都使用这个 BaseObserver 的子类。
@Override
    public void onNext(T t) {
        try {
            onSuccess(t);
        } catch (Exception e) {
            onError(e);
        }
        data = t;
        success = true;
    }
复制代码