简书占小狼
转载请注明原创出处,谢谢!
看得越多,懂的越少,还年轻,多学习!
接着上文 《JVM源码分析之新生代DefNewGeneration的实现》 ,本文对老年代 TenuredGeneration 的垃圾回收算法进行分析。
老年代 TenuredGeneration 使用标记-压缩-清理算法进行垃圾回收,将标记对象移动到堆的另一端,同时更新对象的引用地址,算法的具体实现位于 TenuredGeneration::collect() 方法
void TenuredGeneration::collect(bool full,
bool clear_all_soft_refs,
size_t size,
bool is_tlab) {
retire_alloc_buffers_before_full_gc();
OneContigSpaceCardGeneration::collect(full, clear_all_soft_refs,
size, is_tlab);
}
调用父类的 OneContigSpaceCardGeneration 的 collect() 方法,实现如下
void OneContigSpaceCardGeneration::collect(bool full,
bool clear_all_soft_refs,
size_t size,
bool is_tlab) {
SpecializationStats::clear();
// Temporarily expand the span of our ref processor, so
// refs discovery is over the entire heap, not just this generation
ReferenceProcessorSpanMutator
x(ref_processor(), GenCollectedHeap::heap()->reserved_region());
GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
SpecializationStats::print();
}
其中 GenMarkSweep::invoke_at_safepoint() 是垃圾回收算法实现的核心,下面对 invoke_at_safepoint 方法进行分析。
// 设置引用处理器和引用的处理策略;
_ref_processor = rp;
rp->setup_policy(clear_all_softrefs);
// 设置输出日志;
TraceTime t1("Full GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
// When collecting the permanent generation methodOops may be moving,
// so we either have to flush all bcp data or convert it into bci.
CodeCache::gc_prologue();
Threads::gc_prologue();
// 增加永久代回收的统计次数
// Increment the invocation count for the permanent generation, since it is
// implicitly collected whenever we do a full mark sweep collection.
gch->perm_gen()->stat_record()->invocations++;
// 统计GC前的内存堆已使用大小
// Capture heap size before collection for printing.
size_t gch_prev_used = gch->used();
// 保存当前内存代和更低的内存代、以及永久代的已使用区域
// Capture used regions for each generation that will be
// subject to collection, so that card table adjustments can
// be made intelligently (see clear / invalidate further below).
gch->save_used_regions(level, true /* perm */);
// 初始化遍历栈,用来保存对象和对象头的对应关系
allocate_stacks();
GC使用标记-压缩-清理算法 MarkSweepCompact ,整个过程一共4阶段,分别对应4个方法的实现:
// Mark live objects static void mark_sweep_phase1(int level, bool clear_all_softrefs); // Calculate new addresses static void mark_sweep_phase2(); // Update pointers static void mark_sweep_phase3(int level); // Move objects to new positions static void mark_sweep_phase4();
1、标记根对象,这部分实现和新生代类似,只是不扫描 Younger gens 的对象
follow_root_closure.set_orig_generation(gch->get_gen(level));
gch->gen_process_strong_roots(level,
false, // Younger gens are not roots.
true, // activate StrongRootsScope
true, // Collecting permanent generation.
SharedHeap::SO_SystemClasses,
&follow_root_closure,
true, // walk code active on stacks
&follow_root_closure);
其中 follow_root_closure 负责处理活跃对象,其工作函数如下:
void MarkSweep::FollowRootClosure::do_oop(oop* p) { follow_root(p); }
void MarkSweep::FollowRootClosure::do_oop(narrowOop* p) { follow_root(p); }
工作函数接着调用 follow_root() 方法,完成活跃对象的标记工作,实现如下:
template <class T> inline void MarkSweep::follow_root(T* p) {
// ... 省略一些代码
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
if (!obj->mark()->is_marked()) {
mark_object(obj);
obj->follow_contents();
}
}
follow_stack();
}
如果对象还没有被标记,即 obj->mark()->is_marked() 返回 false ,通过调用 mark_object() 方法标记该对象,接着调用 follow_contents() 和 follow_stack() 方法处理该对象。
1) mark_object() 实现对象的标记过程,如下:
inline void MarkSweep::mark_object(oop obj) {
// some marks may contain information we need to preserve so we store them away
// and overwrite the mark. We'll restore it at the end of markSweep.
markOop mark = obj->mark();
obj->set_mark(markOopDesc::prototype()->set_marked());
if (mark->must_be_preserved(obj)) {
preserve_mark(obj, mark);
}
}
设置对象的对象头为被标记状态,有些对象的对象头可能包含一些信息,需要在GC结束之后进行恢复,可以通过调用 preserve_mark() 方法保存对象和对应的对象头,实现如下:
void MarkSweep::preserve_mark(oop obj, markOop mark) {
// We try to store preserved marks in the to space of the new generation since
// this is storage which should be available. Most of the time this should be
// sufficient space for the marks we need to preserve but if it isn't we fall
// back to using Stacks to keep track of the overflow.
if (_preserved_count < _preserved_count_max) {
_preserved_marks[_preserved_count++].init(obj, mark);
} else {
_preserved_mark_stack.push(mark);
_preserved_oop_stack.push(obj);
}
}
2) follow_contents() 负责处理活跃对象的引用对象,实现如下:
inline void oopDesc::follow_contents(void) {
assert (is_gc_marked(), "should be marked");
blueprint()->oop_follow_contents(this);
}
其中对象实例 instanceKlass 的 oop_follow_contents() 方法实现如下
void instanceKlass::oop_follow_contents(oop obj) {
assert(obj != NULL, "can't follow the content of NULL object");
obj->follow_header();
InstanceKlass_OOP_MAP_ITERATE( /
obj, /
MarkSweep::mark_and_push(p), /
assert_is_in_closed_subset)
}
inline void oopDesc::follow_header() {
if (UseCompressedOops) {
MarkSweep::mark_and_push(compressed_klass_addr());
} else {
MarkSweep::mark_and_push(klass_addr());
}
}
可以发现, oop_follow_contents 方法最终调用 MarkSweep::mark_and_push 方法处理引用对象,标记引用对象并插入到 _marking_stack 栈中
template <class T> inline void MarkSweep::mark_and_push(T* p) {
// assert(Universe::heap()->is_in_reserved(p), "should be in object space");
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
if (!obj->mark()->is_marked()) {
mark_object(obj);
_marking_stack.push(obj);
}
}
}
3) follow_stack() 负责处理 _marking_stack 栈中的对象,并调用对象的 follow_contents 方法处理其引用对象,直到栈中的对象为空,实现如下:
void MarkSweep::follow_stack() {
do {
while (!_marking_stack.is_empty()) {
oop obj = _marking_stack.pop();
assert (obj->is_gc_marked(), "p must be marked");
obj->follow_contents();
}
// Process ObjArrays one at a time to avoid marking stack bloat.
if (!_objarray_stack.is_empty()) {
ObjArrayTask task = _objarray_stack.pop();
objArrayKlass* const k = (objArrayKlass*)task.obj()->blueprint();
k->oop_follow_contents(task.obj(), task.index());
}
} while (!_marking_stack.is_empty() || !_objarray_stack.is_empty());
}
除了`_marking_stack 栈,还有一个 _objarray_stack``栈,用于处理数组对象,当数组非常大时,如果数组对象的引用全都放在标记栈中的话,就会出现爆栈的可能。
到此为止,所有的活跃对象都已经被标记。
2、处理在标记过程中发现的引用;
// Process reference objects found during marking
{
ref_processor()->setup_policy(clear_all_softrefs);
ref_processor()->process_discovered_references(
&is_alive, &keep_alive, &follow_stack_closure, NULL);
}
3、卸载不再使用的类,并清理 CodeCache 和标记栈;
// Follow system dictionary roots and unload classes bool purged_class = SystemDictionary::do_unloading(&is_alive); // Follow code cache roots CodeCache::do_unloading(&is_alive, &keep_alive, purged_class); follow_stack(); // Flush marking stack
4、当有类卸载之后,需要更新存活类的子类、兄弟类、实现类的引用关系,清理未被标记的软引用和弱引用;
follow_weak_klass_links(); assert(_marking_stack.is_empty(), "just drained"); // Visit memoized MDO's and clear any unmarked weak refs follow_mdo_weak_refs(); assert(_marking_stack.is_empty(), "just drained");
5、清理字符串常量池中没有被标记过的对象;
// Visit interned string tables and delete unmarked oops
StringTable::unlink(&is_alive);
// 实现
void StringTable::unlink(BoolObjectClosure* is_alive) {
// Readers of the table are unlocked, so we should only be removing
// entries at a safepoint.
assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
for (int i = 0; i < the_table()->table_size(); ++i) {
for (HashtableEntry<oop>** p = the_table()->bucket_addr(i); *p != NULL; ) {
HashtableEntry<oop>* entry = *p;
if (entry->is_shared()) {
break;
}
assert(entry->literal() != NULL, "just checking");
if (is_alive->do_object_b(entry->literal())) {
p = entry->next_addr();
} else {
*p = entry->next();
the_table()->free_entry(entry);
}
}
}
}
6、清理符号表中没有被引用的符号
// Clean up unreferenced symbols in symbol table.
SymbolTable::unlink();
// Remove unreferenced symbols from the symbol table
// This is done late during GC. This doesn't use the hash table unlink because
// it assumes that the literals are oops.
void SymbolTable::unlink() {
int removed = 0;
int total = 0;
size_t memory_total = 0;
for (int i = 0; i < the_table()->table_size(); ++i) {
for (HashtableEntry<Symbol*>** p = the_table()->bucket_addr(i); *p != NULL; ) {
HashtableEntry<Symbol*>* entry = *p;
if (entry->is_shared()) {
break;
}
Symbol* s = entry->literal();
memory_total += s->object_size();
total++;
assert(s != NULL, "just checking");
// If reference count is zero, remove.
if (s->refcount() == 0) {
delete s;
removed++;
*p = entry->next();
the_table()->free_entry(entry);
} else {
p = entry->next_addr();
}
}
}
symbols_removed += removed;
symbols_counted += total;
// Exclude printing for normal PrintGCDetails because people parse
// this output.
if (PrintGCDetails && Verbose && WizardMode) {
gclog_or_tty->print(" [Symbols=%d size=" SIZE_FORMAT "K] ", total,
(memory_total*HeapWordSize)/1024);
}
}
在第一步中,所有的活跃对象都已经被标记完成,接下来就是遍历所有的对象,把活跃对象移动到内存区域的一端,并重新计算新对象的地址,实现如下:
void GenMarkSweep::mark_sweep_phase2() {
GenCollectedHeap* gch = GenCollectedHeap::heap();
Generation* pg = gch->perm_gen();
// ...
VALIDATE_MARK_SWEEP_ONLY(reset_live_oop_tracking(false));
gch->prepare_for_compaction();
VALIDATE_MARK_SWEEP_ONLY(_live_oops_index_at_perm = _live_oops_index);
CompactPoint perm_cp(pg, NULL, NULL);
pg->prepare_for_compaction(&perm_cp);
}
其中 prepare_for_compaction() 定义在 GenCollectedHeap 中,实现如下:
void GenCollectedHeap::prepare_for_compaction() {
Generation* scanning_gen = _gens[_n_gens-1];
// Start by compacting into same gen.
CompactPoint cp(scanning_gen, NULL, NULL);
while (scanning_gen != NULL) {
scanning_gen->prepare_for_compaction(&cp);
scanning_gen = prev_gen(scanning_gen);
}
}
从 prepare_for_compaction 的方法名定义,可以看出这是进行压缩前的前期工作,在老年代中只有一个 ContiguousSpace 类型的内存区 _the_space ,它的 prepare_for_compaction() 方法实现如下:
// Faster object search.
void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
}
其中 SCAN_AND_FORWARD 函数的实现位于 space.hpp 文件中,为活跃对象计算新地址并保存在对象头,分析过程如下:
1、 compact_top 指针指向压缩目标的内存空间起始地址,在开始之前,指向当前内存区域的起始地址;
HeapWord* compact_top; /* This is where we are currently compacting to. */ /* We're sure to be here before any objects are compacted into this * space, so this is a good time to initialize this: */ set_compaction_top(bottom());
2、初始化 CompactPoint ,并设置当前要执行压缩的区域的指针 compact_top ,如果 CompactPoint 所对应的区域 space 为空,则初始化 CompactPoint 的 space 为内存代的第一块区域,设置 compact_top 为区域的起始地址;否则设置 compact_top 为 CompactPoint 中保存的值,继续该区域的压缩工作;
if (cp->space == NULL) {
assert(cp->gen != NULL, "need a generation");
assert(cp->threshold == NULL, "just checking");
assert(cp->gen->first_compaction_space() == this, "just checking");
cp->space = cp->gen->first_compaction_space();
compact_top = cp->space->bottom();
cp->space->set_compaction_top(compact_top);
cp->threshold = cp->space->initialize_threshold();
} else {
compact_top = cp->space->compaction_top();
}
3、在没有明显的压缩效果之前,我们允许一些垃圾对象移动到内存区域的底部,即开始位置,每进行 MarkSweepAlwaysCompactCount (默认4次)FGC时,再进行一次完全压缩,实现如下:
/* We allow some amount of garbage towards the bottom of the space, so
* we don't start compacting before there is a significant gain to be made.
* Occasionally, we want to ensure a full compaction, which is determined
* by the MarkSweepAlwaysCompactCount parameter.
*/
int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;
bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0);
size_t allowed_deadspace = 0;
if (skip_dead) {
const size_t ratio = allowed_dead_ratio();
allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize;
}
其中 invocations 是FGC的总次数,当 invocations 不是4的倍数时,会在内存区域中留出一块大小为 allowed_deadspace 的死亡空间,默认为5%,用于后续使用;
4、定义一些基本变量: q 为遍历指针, t 为扫描边界, end_of_live 为最后一个活跃对象的地址, LiveRange 保存着死亡对象后面活跃对象的地址区间, first_dead 为第一个死亡对象的地址,默认是该区域的末端地址;
HeapWord* q = bottom();
HeapWord* t = scan_limit();
HeapWord* end_of_live= q; /* One byte beyond the last byte of the last
live object. */
HeapWord* first_dead = end();/* The first dead object. */
LiveRange* liveRange = NULL; /* The current live range, recorded in the
first header of preceding free area. */
_first_dead = first_dead;
5、开始遍历区域中的对象
如果指针 q 所指向位置是一个对象,且被标识过,说明这是一个活跃的对象,则通过 cp->space->forward() 方法计算该对象压缩后的地址;
while (q < t) {
if (block_is_obj(q) && oop(q)->is_gc_marked()) {
/* prefetch beyond q */
Prefetch::write(q, interval);
/* size_t size = oop(q)->size(); changing this for cms for perm gen */
size_t size = block_size(q);
compact_top = cp->space->forward(oop(q), size, cp, compact_top);
q += size;
end_of_live = q;
}
如果对象在压缩之后位置有变化,则将自己的对象头设置为压缩后地址信息,否则表示该对象不需要移动,设置对象头为默认值,并调用 register_live_oop 方法把原指针保存在栈 _live_oops 中
// store the forwarding pointer into the mark word
if ((HeapWord*)q != compact_top) {
q->forward_to(oop(compact_top));
assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
} else {
// if the object isn't moving we can just set the mark to the default
// mark and handle it specially later on.
q->init_mark();
assert(q->forwardee() == NULL, "should be forwarded to NULL");
}
VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, size));
compact_top += size;
如果指针 q 所指向位置不是一个对象,或没有被标识过,说明是一个死亡对象,则直接跳过,直到碰到活跃对象为止,实现如下:
/* run over all the contiguous dead objects */
HeapWord* end = q;
do {
/* prefetch beyond end */
Prefetch::write(end, interval);
end += block_size(end);
} while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));
6、如果死亡空间 allowed_deadspace 可用,则计算死亡对象的大小总和为 sz ,则调用 insert_deadspace() 方法尝试插入一个大小为 sz 的对象,当做活跃对象进行处理,实现如下
/* see if we might want to pretend this object is alive so that
* we don't have to compact quite as often.
*/
if (allowed_deadspace > 0 && q == compact_top) {
size_t sz = pointer_delta(end, q);
if (insert_deadspace(allowed_deadspace, q, sz)) {
compact_top = cp->space->forward(oop(q), sz, cp, compact_top);
q = end;
end_of_live = end;
continue;
}
}
bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
HeapWord* q, size_t deadlength) {
if (allowed_deadspace_words >= deadlength) {
allowed_deadspace_words -= deadlength;
CollectedHeap::fill_with_object(q, deadlength);
oop(q)->set_mark(oop(q)->mark()->set_marked());
assert((int) deadlength == oop(q)->size(), "bad filler object size");
// Recall that we required "q == compaction_top".
return true;
} else {
allowed_deadspace_words = 0;
return false;
}
}
如果死亡空间 allowed_deadspace 大于等于之前连续死亡对象大小总和,则更新 allowed_deadspace 值,并生成一个大小为 sz 且标识过的对象,这时需要更新压缩指针 compact_top 、遍历指针 q 和最后的活跃对象 end_of_live ,因为这里把新对象当成一个活跃对象进行处理,并继续往后遍历对象;
否则忽略这些死亡对象,进行以下步骤:
7、当执行到这一步时,说明跳过了一系列的死亡对象,遇到了活跃对象,如果 liveRange 不为空,则设置当前的结束位置为遍历指针 q ,此时 q 正指向死亡区域的第一个对象;由于在死亡对象后遇到了一个新的活跃对象,需要重新构造一个 LiveRange 对象来记录下一片活跃对象的地址范围,并设置开始和结束为止为 end ,这里直接把死亡区域的第一个对象当作 LiveRange 对象,实现如下
/* for the previous LiveRange, record the end of the live objects. */
if (liveRange) {
liveRange->set_end(q);
}
/* record the current LiveRange object.
* liveRange->start() is overlaid on the mark word.
*/
liveRange = (LiveRange*)q;
liveRange->set_start(end);
liveRange->set_end(end);
8、保存第一个死亡对象的地址,并将遍历指针 q 指向 end 的位置继续遍历
/* see if this is the first dead region. */
if (q < first_dead) {
first_dead = q;
}
/* move on to the next object */
q = end;
9、遍历完成之后,如果当前的 liveRange 不为空,则设置该 liveRange 的结束位置为 q ,设置最后一个活跃对象的位置 _end_of_live ,根据 _end_of_live 的值重新设置第一个死亡对象的位置 _first_dead ;
if (liveRange != NULL) {
liveRange->set_end(q);
}
_end_of_live = end_of_live;
if (end_of_live < first_dead) {
first_dead = end_of_live;
}
_first_dead = first_dead;
10、记录当前区域的压缩位置
cp->space->set_compaction_top(compact_top);
1、调用 gen_process_strong_roots() 并使用 adjust_root_pointer_closure 处理函数调整根对象指针的引用地址, adjust_root_pointer_closure 的实现如下:
void MarkSweep::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); }
void MarkSweep::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
其中 adjust_pointer() 方法定义在 markSweep.inline.hpp 文件中,通过解析对象的对象头,判断对象头中是否保存着经过压缩后的新地址,实现如下
template <class T> inline void MarkSweep::adjust_pointer(T* p, bool isroot) {
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
oop new_obj = oop(obj->mark()->decode_pointer());
// ....
if (new_obj != NULL) {
// ...
oopDesc::encode_store_heap_oop_not_null(p, new_obj);
}
}
VALIDATE_MARK_SWEEP_ONLY(track_adjusted_pointer(p, isroot));
}
2、 adjust_code_pointer_closure() 方法调整引用指针的引用地址;
// Now adjust pointers in remaining weak roots. (All of which should
// have been cleared if they pointed to non-surviving objects.)
CodeBlobToOopClosure adjust_code_pointer_closure(&adjust_pointer_closure,
/*do_marking=*/ false);
gch->gen_process_weak_roots(&adjust_root_pointer_closure,
&adjust_code_pointer_closure,
&adjust_pointer_closure);
3、使用 GenAdjustPointersClosure 遍历各内存代,以更新引用对象的引用地址;
adjust_marks(); GenAdjustPointersClosure blk; gch->generation_iterate(&blk, true); pg->adjust_pointers();
1、压缩永久代的对象,只有等永久代的对象压缩后,实例对象才能获取正确的类数据地址;
2、使用 GenCompactClosure 遍历堆上的对象
GenCompactClosure blk; gch->generation_iterate(&blk, true);
其中 generation_iterate() 将调用 GenCompactClosure 的 do_generation() 方法遍历各个内存代,实现如下
void GenCollectedHeap::generation_iterate(GenClosure* cl,
bool old_to_young) {
if (old_to_young) {
for (int i = _n_gens-1; i >= 0; i--) {
cl->do_generation(_gens[i]);
}
} else {
for (int i = 0; i < _n_gens; i++) {
cl->do_generation(_gens[i]);
}
}
}
GenCompactClosure 的 do_generation() 方法负责调用各个内存代的 compact() 进行压缩工作
class GenCompactClosure: public GenCollectedHeap::GenClosure {
public:
void do_generation(Generation* gen) {
gen->compact();
}
};
其中老年代的 compact() 方法实现如下:
void CompactibleSpace::compact() {
SCAN_AND_COMPACT(obj_size);
}
调用了 SCAN_AND_COMPACT 函数进行对象的移动
1、变量 q 是遍历指针,默认为内存区域的起始地址, t 是最后一个活跃对象的位置,至于为什么要记录最后一个活跃对象的位置,主要是为了避免当GC后的活跃对象较少时,进行不必要的遍历
#define SCAN_AND_COMPACT(obj_size) {
/* Copy all live objects to their new location
* Used by MarkSweep::mark_sweep_phase4() */
HeapWord* q = bottom();
HeapWord* const t = _end_of_live;
2、移动第一个死亡对象之前的活跃对象到新的位置
if (q < t && _first_dead > q && !oop(q)->is_gc_marked()) {
HeapWord* const end = _first_dead;
while (q < end) {
size_t size = obj_size(q);
VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q));
q += size;
}
3、当遍历到 _first_dead 时,即第一个死亡对象的位置,如果 _first_dead 不等于 _end_of_live ,说明有连续多个死亡对象,而且在第一个死亡对象的对象头保存着 LiveRange ,通过 LiveRange 可以获取下一个活跃对象的地址
if (_first_dead == t) {
q = t;
} else {
/* $$$ Funky */
q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer();
}
4、从新的活跃对象开始新的遍历
如果是死亡对象,则通过 LiveRange 获取下一个存活对象的地址
while (q < t) {
if (!oop(q)->is_gc_marked()) {
/* mark is pointer to next marked oop */
debug_only(prev_q = q);
q = (HeapWord*) oop(q)->mark()->decode_pointer();
assert(q > prev_q, "we should be moving forward through memory");
}
5、如果是活跃对象,则调用 live_oop_moved_to 方法将对象移动到压缩后的新地址,并初始化新对象的对象头,实现如下
Prefetch::read(q, scan_interval); /* size and destination */ size_t size = obj_size(q); HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); /* prefetch beyond compaction_top */ Prefetch::write(compaction_top, copy_interval); /* copy object and reinit its mark */ VALIDATE_MARK_SWEEP_ONLY( MarkSweep::live_oop_moved_to(q, size, compaction_top) ); //... Copy::aligned_conjoint_words(q, compaction_top, size); oop(compaction_top)->init_mark(); q += size;
其中 live_oop_moved_to() 方法实现如下:
void MarkSweep::live_oop_moved_to(HeapWord* q, size_t size,
HeapWord* compaction_top) {
assert(oop(q)->forwardee() == NULL || oop(q)->forwardee() == oop(compaction_top),
"should be moved to forwarded location");
if (ValidateMarkSweep) {
MarkSweep::validate_live_oop(oop(q), size);
_live_oops_moved_to->push(oop(compaction_top));
}
if (RecordMarkSweepCompaction) {
_cur_gc_live_oops->push(q);
_cur_gc_live_oops_moved_to->push(compaction_top);
_cur_gc_live_oops_size->push(size);
}
}
原对象的指针已经被保存在 _live_oops 栈中,对应的把压缩后的对象指针保存在 _live_oops_moved_to 中
我是占小狼,如果读完觉得有收获的话,欢迎点赞加关注