本文尝试对遗传算法中不同适值函数的标定(Scaling)方法进行下总结,并针对常用的线性标定和动态线性标定进行了Python实现,以装饰器的形式添加到遗传算法框架GAFT中,这样在使用GAFT运行遗传算法迭代的时候可以更加Pythonic的给自定义的适值函数进行标定。最后针对能够防止早熟情况的大变异算法进行了相应的实现。
目前(动态)线性标定装饰器以及大变异算子均已添加到GAFT中,gaft项目链接:
The tendency to select the best member of the current generation is known as selective pressure.
选择压力也就是种群中最好个体与最坏个体被选中概率的差值,这个差距越大,选中好个体的趋势就越大,则成为选择压力大。
一般情况下,直接拿目标函数作为适值函数十分的方便,但是很多情况下却不能这么做,例如对于求最小值问题,我们必须将目标函数取反才能作为适值函数(这是最简单的情况)。
当我们遗传算法中不同个体适值函数的值相对差别很小的时候,我们根据适应度值的大小进行个体选择的选择压力(Selective pressure)就会变小,选优的能力弱化,这个时候我们需要对原始的适值函数进行标定(Scaling)是的他们相对差别增大,进而增大选择压力,增强算法的选优能力。
例如:
	  
在遗传算法中,局部搜索同广域搜索其实相互矛盾的,注重局部搜索则会陷入局部最优,但是注重广域搜索会导致算法精确开发能力不强。因此需要综合两者考虑,我们可以在搜索刚刚开始的时候使用较小的选择压力来广域搜索,随着迭代的进行可以动态的增大选择压力来使算法偏向于局部搜索。
对目标函数的标定方法一般有:线性标定、动态线性标定、幂律标定、对数标定等
线性标定的形式:
	 
其中f′为标定后的适值函数,ff为原始的目标函数。
对于求目标函数的最大值的时候, 即 arg max f(x)
我们取a=1,b=?fmin+ξ, 其中ξ是一个较小的数,目的是使得种群中最差个体也有被选中的机会,不然自身减掉f?fmin=0, ξ的存在可以增加种群的多样性。
最终的适值函数表达式:
	 
	当我们需要求目标函数最小值的时候,arg min f(x),我们需要对目标函数进行取反操作, 即 厦门堆高车
a=?1,b=fmax?f(x)+ξ
最终的适值函数表达式:
	 
由于适值函数标定并不针对某个目标函数,我便想通过装饰器的方式来方便给任何自定义的fitness函数进行标定。对于基本的线性标定,我在GAEngine中添加了个带参数的装饰器:
| 
								1
							 
								2
							 
								3
							 
								4
							 
								5
							 
								6
							 
								7
							 
								8
							 
								9
							 
								10
							 
								11
							 
								12
							 
								13
							 
								14
							 
								15
							 
								16
							 
								17
							 
								18
							 
								19
							 
								20
							 
								21
							 
								22
							 
								23
							 
								24
							 
								25
							 
								26
							 
								27
							 
								28
							 | 
								def linear_scaling(self, target='max', ksi=0.5):
							 
								    '''
							 
								    A decorator constructor for fitness function linear scaling.
							 
								    :param target: The optimization target, maximization or minimization.
							 
								    :type target: str, 'max' or 'min'
							 
								    :param ksi: Selective pressure adjustment value.
							 
								    :type ksi: float
							 
								    Linear Scaling:
							 
								        1. arg max f(x), then f' = f - min{f(x)} + ksi;
							 
								        2. arg min f(x), then f' = max{f(x)} - f(x) + ksi;
							 
								    '''
							 
								    def _linear_scaling(fn):
							 
								        # For original fitness calculation.
							 
								        self.ori_fitness = fn
							 
								        @wraps(fn)
							 
								        def _fn_with_linear_scaling(indv):
							 
								            # Original fitness value.
							 
								            f = fn(indv)
							 
								            # Determine the value of a and b.
							 
								            if target == 'max':
							 
								                f_prime = f - self.ori_fmin + ksi
							 
								            elif target == 'min':
							 
								                f_prime = self.ori_fmax - f + ksi
							 
								            else:
							 
								                raise ValueError('Invalid target type({})'.format(target))
							 
								            return f_prime
							 
								        return _fn_with_linear_scaling
							 
								    return _linear_scaling
							 | 
这个时候如果我们在定义了一个自己的目标函数以后,想对其进行线性标定便可以使用engine的这个装饰器对函数进行修饰即可, 像下面这样:
| 
								1
							 
								2
							 
								3
							 
								4
							 
								5
							 
								6
							 
								7
							 | 
								# Create a GA engine...
							 
								# 先标定,后注册到引擎中
							 
								@engine.fitness_register
							 
								@engine.linear_scaling(target='min', ksi=0.5)
							 
								def fitness(indv):
							 
								    x, = indv.variants
							 
								    return x + 10*sin(5*x) + 7*cos(4*x)
							 | 
其中装饰器中的参数分别为:
动态线性标定是遗传算法中最常用的标定方法,他是基于上面提到的线性标定,在线性标定中的ξξ在动态线性标定中并不是一成不变的,而是随着迭代次数的增加而变化。
动态线性标定的函数表达式:
	 
其中,k为迭代指标,表示ξ会随着迭代数而不同。
当我们的优化目标是目标函数的最大值,这是我们取ak=1,bk=?fmin+ξk, 这是的函数表达为:
	 
求最小值的时候需要取反操作,这时取ak=?1,bk=fmax+ξk, 最终函数表达式:
	 
动态线性标定中的ξk作用同线性标定中的ξ为选择压力调节值, 它的存在使得种群中最坏的个体仍有被选中的机会,但是动态标定中的ξkξk的值会随着kk增大而减小。
ξkξk的取值: ξ0=M,ξk=ξk?1?r,r∈[0.9,0.999], 我们通过调节M和r来调节ξk
通过可以动态变化的ξk,我们可以使广域搜索范围宽保持种群的多样性,局部搜索保持收敛性,即,开始时希望选择小,迭代到后面希望选择压力逐渐变大.
与上面线性标定的方法相同,GAFT中同样使用了标定装饰器来装饰用户自定义的目标函数,实现代码:
| 
								1
							 
								2
							 
								3
							 
								4
							 
								5
							 
								6
							 
								7
							 
								8
							 
								9
							 
								10
							 
								11
							 
								12
							 
								13
							 
								14
							 
								15
							 
								16
							 
								17
							 
								18
							 
								19
							 
								20
							 
								21
							 
								22
							 
								23
							 
								24
							 
								25
							 
								26
							 
								27
							 
								28
							 
								29
							 
								30
							 
								31
							 | 
								def dynamic_linear_scaling(self, target='max', ksi0=2, r=0.9):
							 
								    '''
							 
								    A decorator constructor for fitness dynamic linear scaling.
							 
								    :param target: The optimization target, maximization or minimization.
							 
								    :type target: str, 'max' or 'min'
							 
								    :param ksi0: Initial selective pressure adjustment value, default value
							 
								                 is 2
							 
								    :type ksi0: float
							 
								    :param r: The reduction factor for selective pressure adjustment value,
							 
								              ksi^(k-1)*r is the adjustment value for generation k, default
							 
								              value is 0.9
							 
								    :type r: float in range [0.9, 0.999]
							 
								    Dynamic Linear Scaling:
							 
								        For maximizaiton, f' = f(x) - min{f(x)} + ksi^k, k is generation number.
							 
								    '''
							 
								    def _dynamic_linear_scaling(fn):
							 
								        # For original fitness calculation.
							 
								        self.ori_fitness = fn
							 
								        @wraps(fn)
							 
								        def _fn_with_dynamic_linear_scaling(indv):
							 
								            f = fn(indv)
							 
								            k = self.current_generation + 1
							 
								            if target == 'max':
							 
								                f_prime = f - self.ori_fmin + ksi0*(r**k)
							 
								            elif target == 'min':
							 
								                f_prime = self.ori_fmax - f + ksi0*(r**k)
							 
								            else:
							 
								                raise ValueError('Invalid target type({})'.format(target))
							 
								            return f_prime
							 
								        return _fn_with_dynamic_linear_scaling
							 
								    return _dynamic_linear_scaling
							 | 
这里充分的利用Python的闭包,在engine中获取当前种群最大值与最小值的相关数据。
在脚本中修饰目标函数便可以这样:
| 
								1
							 
								2
							 
								3
							 
								4
							 
								5
							 | 
								@engine.fitness_register
							 
								@engine.dynamic_linear_scaling(target='max', ksi0=2, r=0.9)
							 
								def fitness(indv):
							 
								    x, = indv.variants
							 
								    return x + 10*sin(5*x) + 7*cos(4*x)
							 | 
	
这里简要的介绍下其他标定方法。
众所周知,简单的遗传算法存在“早熟”的问题,也就是算法过早的收敛到一个非全局最优点,出现此问题的主要原因是一种被称为“顶端优势”的现象存在,即当算法进行到某一代时,在种群中某个个体的适应度远远大于任何一个个体的适应度,导致选择算法总是会选到此个体生成子代个体,极限情况下就是所有个体都来自统一祖先,即”早熟”。除了对目标函数进行标定,我们可以通过大变异算法来避免早熟。
大致思路: 当某代中所有个体集中在一起时,我们以一个远大于通常变异概率的概率执行一次变异操作,具有大变异概率的变异操作能够随机、独立的产生许多新的个体,从而是整个种群脱了“早熟”。
通常采取比较种群中所有个体的适应度值的平均值favg与最大值fmax的接近程度来判断,如果最大值与平均值越接近说明个体就越集中。
当某一代的最大适应度fmax与平均适应度值favg满足:
	 
其中,0.5<α<1, 被称为密集因子,表征个体集中程度。随后,我们以一个大变异概率进行一次变异操作(通常大5倍以上), 即“打散”。
大变异操作与具体的变异算子实现无关,这里我还是依据内置的FlipBitMutation算子为基础, 具体的代码实现参见https://github.com/PytLab/gaft/blob/master/gaft/operators/mutation/flip_bit_mutation.py
| 
								1
							 
								2
							 
								3
							 
								4
							 
								5
							 
								6
							 
								7
							 
								8
							 
								9
							 
								10
							 
								11
							 
								12
							 
								13
							 
								14
							 
								15
							 
								16
							 
								17
							 
								18
							 
								19
							 
								20
							 
								21
							 
								22
							 
								23
							 
								24
							 
								25
							 
								26
							 
								27
							 
								28
							 
								29
							 
								30
							 
								31
							 
								32
							 
								33
							 
								34
							 
								35
							 
								36
							 | 
								class FlipBitBigMutation(FlipBitMutation):
							 
								    def __init__(self, pm, pbm, alpha):
							 
								        '''
							 
								        Mutation operator using Flip Bit mutation implementation with adaptive
							 
								        big mutation rate to overcome premature or local-best solution.
							 
								        :param pm: The probability of mutation (usually between 0.001 ~ 0.1)
							 
								        :type pm: float in (0.0, 1.0]
							 
								        :param pbm: The probability of big mutation, usually more than 5 times
							 
								                    bigger than pm.
							 
								        :type pbm: float
							 
								        :param alpha: intensive factor
							 
								        :type alpha: float, in range (0.5, 1)
							 
								        '''
							 
								        super(self.__class__, self).__init__(pm)
							 
								        if not (0.0 < pbm < 1.0):
							 
								            raise ValueError('Invalid big mutation probability')
							 
								        if pbm < 5*pm:
							 
								            self.logger.warning('Relative low probability for big mutation')
							 
								        self.pbm = pbm
							 
								        # Intensive factor.
							 
								        if not (0.5 < alpha < 1.0):
							 
								            raise ValueError('Invalid intensive factor, should be in (0.5, 1.0)')
							 
								        self.alpha = alpha
							 
								    def mutate(self, individual, engine):
							 
								        '''
							 
								        Mutate the individual with adaptive big mutation rate.
							 
								        '''
							 
								        pm = self.pm
							 
								        if engine.fmax*self.alpha < engine.fmean:
							 
								            self.pm = self.pbm
							 
								            self.logger.info('Big mutation probabilty: {} -> {}'.format(pm, self.pm))
							 
								        # Mutate with big probability.
							 
								        individual = super(self.__class__, self).mutate(individual, engine)
							 
								        # Recover probability.
							 
								        self.pm = pm
							 
								        return individual
							 | 
	
本文尝试对遗传算法中不同适值函数的标定(Scaling)方法进行下总结,并针对常用的线性标定和动态线性标定进行了Python实现,以装饰器的形式添加到遗传算法框架GAFT中,这样在使用GAFT运行遗传算法迭代的时候可以更加Pythonic的给自定义的适值函数进行标定。最后针对能够防止早熟情况的大变异算法进行了相应的实现。