前面我们看到了Java对象如何通过Encoder转换成ByteBuf对象的,那么现在问题来了,ByteBuf是如何写入到远程节点的呢,这就是本文要分析的内容。
在前面的ChannelPipeline分析中我们提到过HeadContext和TailContext两个特殊的ChannelHandlerContexty,而HeadContext就是位于最前方的ChannelOutboundHandler,它也是最终负责处理write、flush等outbound事件的处理器。
从HeadContext的write和flush方法实现可以看到,其委托给了所在channelPipeline的channel的unsafe来实现。
final class HeadContextextends AbstractChannelHandlerContext
implementsChannelOutboundHandler,ChannelInboundHandler{
private final Unsafe unsafe;
HeadContext(DefaultChannelPipeline pipeline) {
super(pipeline, null, HEAD_NAME, false, true);
unsafe = pipeline.channel().unsafe();
setAddComplete();
}
...
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
unsafe.write(msg, promise);
}
@Override
public void flush(ChannelHandlerContext ctx) throws Exception {
unsafe.flush();
}
AbstractNioChannel使用的AbstractNioUnsafe和AbstractUnsafe差别不大。我们注重看一下AbstractUnsafe类。首先这里声明了一个ChannelOutboundBuffer类,这个类是用来保存已经write的ByteBuf但是还没有flush的ByteBuf以及已经flush但是还没有写到远端的数据。
protected abstract class AbstractUnsafeimplements Unsafe{
private volatile ChannelOutboundBuffer outboundBuffer = new ChannelOutboundBuffer(AbstractChannel.this);
private RecvByteBufAllocator.Handle recvHandle;
private boolean inFlush0;
ChannelOutboundBuffer由一个链表构成,链表的Entry中保存表示的消息、next指针等。
其中几个比较关键的变量
public final class ChannelOutboundBuffer{
private final Channel channel;
// Entry(flushedEntry) --> ... Entry(unflushedEntry) --> ... Entry(tailEntry)
//
// The Entry that is the first in the linked-list structure that was flushed
private Entry flushedEntry;
// The Entry which is the first unflushed in the linked-list structure
private Entry unflushedEntry;
// The Entry which represents the tail of the buffer
private Entry tailEntry;
// The number of flushed entries that are not written yet
private int flushed;
...
再来看下AbstractUnsafe的write实现,最关键的地方是调用outboundBuffer.addMessage(msg, size, promise),这样将write的消息放到了outboundBuffer链表中。
@Override
public final void write(Object msg, ChannelPromise promise) {
assertEventLoop();
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null) {
// If the outboundBuffer is null we know the channel was closed and so
// need to fail the future right away. If it is not null the handling of the rest
// will be done in flush0()
// See https://github.com/netty/netty/issues/2362
safeSetFailure(promise, WRITE_CLOSED_CHANNEL_EXCEPTION);
// release message now to prevent resource-leak
ReferenceCountUtil.release(msg);
return;
}
int size;
try {
msg = filterOutboundMessage(msg);
size = pipeline.estimatorHandle().size(msg);
if (size < 0) {
size = 0;
}
} catch (Throwable t) {
safeSetFailure(promise, t);
ReferenceCountUtil.release(msg);
return;
}
outboundBuffer.addMessage(msg, size, promise);
}
如果当前channel的outbound没有创建或之前的都已经write完成,则会是下图所示状态。这个Entry本身是unflushedEntry和tailEntry
再加一个消息Entry后
应用层调用完write后不一定会立即进行flush,flush会进行系统调用是一个相对耗时的操作,所以有些优化会在channelReadComplete时来进行flush。
flush分为两步
@Override
public final void flush(){
assertEventLoop();
ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null) {
return;
}
outboundBuffer.addFlush();
flush0();
}
addFlush会从unflushedEntry开始,如果之前flushedEntry指向空,则将flushEntry指向unflushedEntry,然后开始遍历到tailEntry并且记录flushed数量
最后将unflushedEntry设置为null
如果这个时候又调用了addMessage,则此时的结构是这样的
flushedEntry –> entry –> entry –> unflushedEntry –> entry –> tailEntry
public void addFlush(){
// There is no need to process all entries if there was already a flush before and no new messages
// where added in the meantime.
//
// See https://github.com/netty/netty/issues/2577
Entry entry = unflushedEntry;
if (entry != null) {
if (flushedEntry == null) {
// there is no flushedEntry yet, so start with the entry
flushedEntry = entry;
}
do {
flushed ++;
if (!entry.promise.setUncancellable()) {
// Was cancelled so make sure we free up memory and notify about the freed bytes
int pending = entry.cancel();
decrementPendingOutboundBytes(pending, false, true);
}
entry = entry.next;
} while (entry != null);
// All flushed so reset unflushedEntry
unflushedEntry = null;
}
}
@SuppressWarnings("deprecation")
protected void flush0() {
if (inFlush0) {
// Avoid re-entrance
return;
}
final ChannelOutboundBuffer outboundBuffer = this.outboundBuffer;
if (outboundBuffer == null || outboundBuffer.isEmpty()) {
return;
}
inFlush0 = true;
// Mark all pending write requests as failure if the channel is inactive.
if (!isActive()) {
try {
if (isOpen()) {
outboundBuffer.failFlushed(FLUSH0_NOT_YET_CONNECTED_EXCEPTION, true);
} else {
// Do not trigger channelWritabilityChanged because the channel is closed already.
outboundBuffer.failFlushed(FLUSH0_CLOSED_CHANNEL_EXCEPTION, false);
}
} finally {
inFlush0 = false;
}
return;
}
try {
doWrite(outboundBuffer);
} catch (Throwable t) {
if (t instanceof IOException && config().isAutoClose()) {
/**
* Just call {@link#close(ChannelPromise, Throwable, boolean)} here which will take care of
* failing all flushed messages and also ensure the actual close of the underlying transport
* will happen before the promises are notified.
*
* This is needed as otherwise {@link#isActive()} , {@link#isOpen()} and {@link#isWritable()}
* may still return {@codetrue} even if the channel should be closed as result of the exception.
*/
close(voidPromise(), t, FLUSH0_CLOSED_CHANNEL_EXCEPTION, false);
} else {
try {
shutdownOutput(voidPromise(), t);
} catch (Throwable t2) {
close(voidPromise(), t2, FLUSH0_CLOSED_CHANNEL_EXCEPTION, false);
}
}
} finally {
inFlush0 = false;
}
}
doWrite方法是抽象的,需要各个AbstractChannel的具体类实现的。
NioSocketChannel实现如下
protected void doWrite(ChannelOutboundBuffer in) throws Exception {
SocketChannel ch = javaChannel();
int writeSpinCount = config().getWriteSpinCount();
do {
if (in.isEmpty()) {
// All written so clear OP_WRITE
clearOpWrite();
// Directly return here so incompleteWrite(...) is not called.
return;
}
// Ensure the pending writes are made of ByteBufs only.
int maxBytesPerGatheringWrite = ((NioSocketChannelConfig) config).getMaxBytesPerGatheringWrite();
ByteBuffer[] nioBuffers = in.nioBuffers(1024, maxBytesPerGatheringWrite);
int nioBufferCnt = in.nioBufferCount();
// Always us nioBuffers() to workaround data-corruption.
// See https://github.com/netty/netty/issues/2761
switch (nioBufferCnt) {
case 0:
// We have something else beside ByteBuffers to write so fallback to normal writes.
writeSpinCount -= doWrite0(in);
break;
case 1: {
// Only one ByteBuf so use non-gathering write
// Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
// to check if the total size of all the buffers is non-zero.
ByteBuffer buffer = nioBuffers[0];
int attemptedBytes = buffer.remaining();
final int localWrittenBytes = ch.write(buffer);
if (localWrittenBytes <= 0) {
incompleteWrite(true);
return;
}
adjustMaxBytesPerGatheringWrite(attemptedBytes, localWrittenBytes, maxBytesPerGatheringWrite);
in.removeBytes(localWrittenBytes);
--writeSpinCount;
break;
}
default: {
// Zero length buffers are not added to nioBuffers by ChannelOutboundBuffer, so there is no need
// to check if the total size of all the buffers is non-zero.
// We limit the max amount to int above so cast is safe
long attemptedBytes = in.nioBufferSize();
final long localWrittenBytes = ch.write(nioBuffers, 0, nioBufferCnt);
if (localWrittenBytes <= 0) {
incompleteWrite(true);
return;
}
// Casting to int is safe because we limit the total amount of data in the nioBuffers to int above.
adjustMaxBytesPerGatheringWrite((int) attemptedBytes, (int) localWrittenBytes,
maxBytesPerGatheringWrite);
in.removeBytes(localWrittenBytes);
--writeSpinCount;
break;
}
}
} while (writeSpinCount > 0);
incompleteWrite(writeSpinCount < 0);
}
removeBytes负责从ChannelOutboundBuffer中的链表中删除已经真正写入完成的Entry
public void removeBytes(long writtenBytes){
for (;;) {
Object msg = current();
if (!(msg instanceof ByteBuf)) {
assert writtenBytes == 0;
break;
}
final ByteBuf buf = (ByteBuf) msg;
final int readerIndex = buf.readerIndex();
final int readableBytes = buf.writerIndex() - readerIndex;
if (readableBytes <= writtenBytes) {
if (writtenBytes != 0) {
progress(readableBytes);
writtenBytes -= readableBytes;
}
remove();
} else { // readableBytes > writtenBytes
if (writtenBytes != 0) {
buf.readerIndex(readerIndex + (int) writtenBytes);
progress(writtenBytes);
}
break;
}
}
clearNioBuffers();
}
public boolean remove() {
Entry e = flushedEntry;
if (e == null) {
clearNioBuffers();
return false;
}
Object msg = e.msg;
ChannelPromise promise = e.promise;
int size = e.pendingSize;
removeEntry(e);
if (!e.cancelled) {
// only release message, notify and decrement if it was not canceled before.
ReferenceCountUtil.safeRelease(msg);
safeSuccess(promise);
decrementPendingOutboundBytes(size, false, true);
}
// recycle the entry
e.recycle();
return true;
}
removeEntry判断当前flushed的Entry是否已经删除完了,如果删完了则设置flushedEntry为null并且如果已经删到了tailEntry
则把tailEntry和unflushedEntry也设置为null
否则将flushedEntry指向移到next
private void removeEntry(Entry e) {
if (-- flushed == 0) {
// processed everything
flushedEntry = null;
if (e == tailEntry) {
tailEntry = null;
unflushedEntry = null;
}
} else {
flushedEntry = e.next;
}
}
至此,一个应用中的数据如何通过Encoder转换成ByteBuf,存储到ChannelOutboundBuffer,然后写入到SocketChannel中的过程已经清晰了。