问题描述
给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
例如:
A =
1 2
3 4
A的2次幂
7 10
15 22
输入格式
第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出格式
输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
样例输入
2 2
1 2
3 4
样例输出
7 10
15 22
package base17;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
in.close();
long[][] a = new long[40][40];
long[][] b = new long[40][40];
long[][] t = new long[40][40];
//输入
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
a[i][j] = in.nextLong();
t[i][j] = a[i][j];
}
}
//0次幂 输出单位矩阵
if (m == 0) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) {
System.out.print(1 + " ");
} else {
System.out.print(0 + " ");
}
}
System.out.println();
}
return;
}
//m次幂
while (--m > 0) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
int k = n;
while (k > 0) {
b[i][j] += t[i][k - 1] * a[k - 1][j];
k--;
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
t[i][j] = b[i][j];
b[i][j] = 0;
}
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
System.out.print(t[i][j] + " ");
}
System.out.println();
}
}
}
❤❤点击这里 -> 订阅PAT、蓝桥杯、GPLT天梯赛、LeetCode题解离线版❤❤