// java.util.Collection
default Stream<E> stream() {
return StreamSupport.stream(spliterator(), false);
}
default Stream<E> parallelStream() {
return StreamSupport.stream(spliterator(), true);
}
@Data
class Student {
private Integer height;
private String sex;
}
Map<String, List<Student>> map = Maps.newHashMap();
List<Student> list = Lists.newArrayList();
// 传统的迭代方式
for (Student student : list) {
if (student.getHeight() > 160) {
String sex = student.getSex();
if (!map.containsKey(sex)) {
map.put(sex, Lists.newArrayList());
}
map.get(sex).add(student);
}
}
// Stream API,串行实现
map = list.stream().filter((Student s) -> s.getHeight() > 160).collect(Collectors.groupingBy(Student::getSex));
// Stream API,并行实现
map = list.parallelStream().filter((Student s) -> s.getHeight() > 160).collect(Collectors.groupingBy(Student::getSex));
List<String> names = Arrays.asList("张三", "李四", "王老五", "李三", "刘老四", "王小二", "张四", "张五六七");
String maxLenStartWithZ = names.stream()
.filter(name -> name.startsWith("张"))
.mapToInt(String::length)
.max()
.toString();
names是ArrayList集合,names.stream会调用集合类基础接口Collection的stream方法
default Stream<E> stream() {
return StreamSupport.stream(spliterator(), false);
}
Collection.stream方法会调用StreamSupport.stream方法,方法中初始化了一个ReferencePipeline的Head内部类对象
public static <T> Stream<T> stream(Spliterator<T> spliterator, boolean parallel) {
Objects.requireNonNull(spliterator);
return new ReferencePipeline.Head<>(spliterator,
StreamOpFlag.fromCharacteristics(spliterator),
parallel);
}
调用filter和map,两者都是 无状态的中间操作 ,因此并没有执行任何操作,只是分别创建了一个 Stage 来 标识 用户的每一次操作
通常情况下,Stream的操作需要一个回调函数,所以一个 完整的Stage 是由 数据来源、操作、回调函数 组成的三元组表示
@Override
public final Stream<P_OUT> filter(Predicate<? super P_OUT> predicate) {
Objects.requireNonNull(predicate);
return new StatelessOp<P_OUT, P_OUT>(this, StreamShape.REFERENCE,
StreamOpFlag.NOT_SIZED) {
@Override
Sink<P_OUT> opWrapSink(int flags, Sink<P_OUT> sink) {
return new Sink.ChainedReference<P_OUT, P_OUT>(sink) {
@Override
public void begin(long size) {
downstream.begin(-1);
}
@Override
public void accept(P_OUT u) {
if (predicate.test(u))
downstream.accept(u);
}
};
}
};
}
@Override
@SuppressWarnings("unchecked")
public final <R> Stream<R> map(Function<? super P_OUT, ? extends R> mapper) {
Objects.requireNonNull(mapper);
return new StatelessOp<P_OUT, R>(this, StreamShape.REFERENCE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink<P_OUT> opWrapSink(int flags, Sink<R> sink) {
return new Sink.ChainedReference<P_OUT, R>(sink) {
@Override
public void accept(P_OUT u) {
downstream.accept(mapper.apply(u));
}
};
}
};
}
new StatelessOp会调用父类AbstractPipeline的构造函数,该构造函数会将前后的Stage联系起来,生成一个 Stage链表
AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
if (previousStage.linkedOrConsumed)
throw new IllegalStateException(MSG_STREAM_LINKED);
previousStage.linkedOrConsumed = true;
previousStage.nextStage = this; // 将当前的Stage的next指针指向之前的Stage
this.previousStage = previousStage; // 赋值当前Stage当全局变量previousStage
this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
this.sourceStage = previousStage.sourceStage;
if (opIsStateful())
sourceStage.sourceAnyStateful = true;
this.depth = previousStage.depth + 1;
}
创建Stage时,会包含opWrapSink方法,该方法把一个 操作的具体实现 封装在Sink类中,Sink采用 处理->转发 的模式来 叠加操作
调用max,会调用ReferencePipeline的max方法
由于max是 终结操作 ,会创建一个 TerminalOp操作 ,同时创建一个 ReducingSink ,并且将操作封装在Sink类中
@Override
public final Optional<P_OUT> max(Comparator<? super P_OUT> comparator) {
return reduce(BinaryOperator.maxBy(comparator));
}
最后调用AbstractPipeline的wrapSink方法,生成一个Sink链表, Sink链表中的每一个Sink都封装了一个操作的具体实现
final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
Objects.requireNonNull(sink);
for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
}
return (Sink<P_IN>) sink;
}
当Sink链表生成完成后,Stream开始执行,通过Spliterator迭代集合,执行Sink链表中的具体操作
@Override
final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
Objects.requireNonNull(wrappedSink);
if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
wrappedSink.begin(spliterator.getExactSizeIfKnown());
spliterator.forEachRemaining(wrappedSink);
wrappedSink.end();
}
else {
copyIntoWithCancel(wrappedSink, spliterator);
}
}
List<String> names = Arrays.asList("张三", "李四", "王老五", "李三", "刘老四", "王小二", "张四", "张五六七");
String maxLenStartWithZ = names.stream()
.parallel()
.filter(name -> name.startsWith("张"))
.mapToInt(String::length)
.max()
.toString();
Stream的并行处理在执行终结操作之前,跟串行处理的实现是一样的,在调用终结方法之后,会调用TerminalOp.evaluateParallel
final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) {
assert getOutputShape() == terminalOp.inputShape();
if (linkedOrConsumed)
throw new IllegalStateException(MSG_STREAM_LINKED);
linkedOrConsumed = true;
return isParallel()
? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags()))
: terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags()));
}