Zygote是init启动的第一个进程。
所有的system server 都是从Zygote fork来的。
// 进程名称是zygote,运行的二进制文件在/system/bin/app_process64
// 启动参数是 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
class main
priority -20
user root
group root readproc
socket zygote stream 660 root system //创建一个socket,名字叫zygote,以tcp形式
onrestart write /sys/android_power/request_state wake
onrestart write /sys/power/state on
onrestart restart audioserver
onrestart restart cameraserver
onrestart restart media
onrestart restart netd
onrestart restart wificond
writepid /dev/cpuset/foreground/tasks //创建子进程时,向/dev/cpuset/foreground/tasks 写入pid
// 另一个service ,名字 zygote_secondary
service zygote_secondary /system/bin/app_process32 -Xzygote /system/bin --zygote --socket-name=zygote_secondary --enable-lazy-preload
class main
priority -20
user root
group root readproc
socket zygote_secondary stream 660 root system
onrestart restart zygote
writepid /dev/cpuset/foreground/tasks
定义在 platform/system/core/rootdir/init.rc
# It is recommended to put unnecessary data/ initialization from post-fs-data
# to start-zygote in device s init.rc to unblock zygote start.
on zygote-start && property:ro.crypto.state=unencrypted
# A/B update verifier that marks a successful boot.
exec_start update_verifier_nonencrypted
start netd
start zygote
start zygote_secondary
on zygote-start && property:ro.crypto.state=unsupported
# A/B update verifier that marks a successful boot.
exec_start update_verifier_nonencrypted
start netd
start zygote
start zygote_secondary
on zygote-start && property:ro.crypto.state=encrypted && property:ro.crypto.type=file
# A/B update verifier that marks a successful boot.
exec_start update_verifier_nonencrypted
start netd
start zygote
start zygote_secondary
zygote在哪里触发
on late-init
...
trigger zygote-start
late-init 在哪里启动
在init进程进入循环的最后一个地方
if (bootmode == "charger") {
am.QueueEventTrigger("charger");
} else {
am.QueueEventTrigger("late-init");
}
这个就是init进程启动Zygote的由来。
为什么要有Zygote,虽然init是android系统启动的第一个进程,但是init来管理的事情太多了,如果都是有init来触发启动其他android进程,这个init事情就太多了。所以通过Zygote来启动其他进程,就把android其他进程由Zygote来负责了。
service zygote /system/bin/app_process64 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
在app_main.cpp种定义了Zygote的解析过程。
int main(int argc, char* const argv[])
{
//将参数argv放到argv_String字符串中,然后打印出来
//之前start zygote传入的参数是 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
if (!LOG_NDEBUG) {
String8 argv_String;
for (int i = 0; i < argc; ++i) {
argv_String.append("/"");
argv_String.append(argv[i]);
argv_String.append("/" ");
}
ALOGV("app_process main with argv: %s", argv_String.string());
}
AppRuntime runtime(argv[0], computeArgBlockSize(argc, argv));//构建AppRuntime对象,并将参数传入
// Process command line arguments
// ignore argv[0]
argc--;
argv++;
// Everything up to -- or first non - arg goes to the vm.
//
// The first argument after the VM args is the "parent dir", which
// is currently unused.
//
// After the parent dir, we expect one or more the following internal
// arguments :
//
// --zygote : Start in zygote mode
// --start-system-server : Start the system server.
// --application : Start in application (stand alone, non zygote) mode.
// --nice-name : The nice name for this process.
//
// For non zygote starts, these arguments will be followed by
// the main class name. All remaining arguments are passed to
// the main method of this class.
//
// For zygote starts, all remaining arguments are passed to the zygote.
// main function.
//
// Note that we must copy argument string values since we will rewrite the
// entire argument block when we apply the nice name to argv0.
//
// As an exception to the above rule, anything in "spaced commands"
// goes to the vm even though it has a space in it.
//上面这段英文大概讲的是,所有在 "--" 后面的非 "-"开头的参数都将传入vm, 但是有个例外是spaced commands数组中的参数
const char* spaced_commands[] = { "-cp", "-classpath" };//这两个参数是Java程序需要依赖的Jar包,相当于import
// Allow "spaced commands" to be succeeded by exactly 1 argument (regardless of -s).
bool known_command = false;
int i;
for (i = 0; i < argc; i++) {
if (known_command == true) { //将spaced_commands中的参数额外加入VM
runtime.addOption(strdup(argv[i]));
ALOGV("app_process main add known option %s ", argv[i]);
known_command = false;
continue;
}
for (int j = 0;
j < static_cast<int>(sizeof(spaced_commands) / sizeof(spaced_commands[0]));
++j) {
if (strcmp(argv[i], spaced_commands[j]) == 0) {//比较参数是否是spaced_commands中的参数
known_command = true;
ALOGV("app_process main found known command %s ", argv[i]);
}
}
if (argv[i][0] != - ) { //如果参数第一个字符是 - ,直接跳出循环,之前传入的第一个参数是 -Xzygote,所以执行到这儿就跳出了,i=0
break;
}
if (argv[i][1] == - && argv[i][2] == 0) {
++i; // Skip --.
break;
}
runtime.addOption(strdup(argv[i]));
ALOGV("app_process main add option %s ", argv[i]);
}
// Parse runtime arguments. Stop at first unrecognized option.
bool zygote = false;
bool startSystemServer = false;
bool application = false;
String8 niceName;
String8 className;
++i; // Skip unused "parent dir" argument.
//跳过一个参数,之前跳过了-Xzygote,这里继续跳过 /system/bin ,也就是所谓的 "parent dir"
while (i < argc) {
const char* arg = argv[i++];
if (strcmp(arg, "--zygote") == 0) {//表示是zygote启动模式
zygote = true;
niceName = ZYGOTE_NICE_NAME;//这个值根据平台可能是zygote64或zygote
} else if (strcmp(arg, "--start-system-server") == 0) {//需要启动SystemServer
startSystemServer = true;
} else if (strcmp(arg, "--application") == 0) {//表示是application启动模式,也就是普通应用程序
application = true;
} else if (strncmp(arg, "--nice-name=", 12) == 0) {//进程别名
niceName.setTo(arg + 12);
} else if (strncmp(arg, "--", 2) != 0) {//application启动的class
className.setTo(arg);
break;
} else {
--i;
break;
}
}
Vector<String8> args;
if (!className.isEmpty()) {//className不为空,说明是application启动模式
// We re not in zygote mode, the only argument we need to pass
// to RuntimeInit is the application argument.
//
// The Remainder of args get passed to startup class main(). Make
// copies of them before we overwrite them with the process name.
args.add(application ? String8("application") : String8("tool"));
runtime.setClassNameAndArgs(className, argc - i, argv + i);//将className和参数设置给runtime
if (!LOG_NDEBUG) {//打印class带的参数
String8 restOfArgs;
char* const* argv_new = argv + i;
int argc_new = argc - i;
for (int k = 0; k < argc_new; ++k) {
restOfArgs.append("/"");
restOfArgs.append(argv_new[k]);
restOfArgs.append("/" ");
}
ALOGV("Class name = %s, args = %s", className.string(), restOfArgs.string());
}
} else { //zygote启动模式
// We re in zygote mode.
maybeCreateDalvikCache(); //新建Dalvik的缓存目录
if (startSystemServer) {//加入start-system-server参数
args.add(String8("start-system-server"));
}
char prop[PROP_VALUE_MAX];
if (property_get(ABI_LIST_PROPERTY, prop, NULL) == 0) {
LOG_ALWAYS_FATAL("app_process: Unable to determine ABI list from property %s.",
ABI_LIST_PROPERTY);
return 11;
}
String8 abiFlag("--abi-list=");
abiFlag.append(prop);
args.add(abiFlag); //加入--abi-list=参数
// In zygote mode, pass all remaining arguments to the zygote
// main() method.
for (; i < argc; ++i) {//将剩下的参数加入args
args.add(String8(argv[i]));
}
}
if (!niceName.isEmpty()) {//设置进程别名
runtime.setArgv0(niceName.string(), true /* setProcName */);
}
if (zygote) { //如果是zygote启动模式,则加载ZygoteInit
runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
} else if (className) {//如果是application启动模式,则加载RuntimeInit
runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
} else {
fprintf(stderr, "Error: no class name or --zygote supplied./n");
app_usage();
LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
}
}
参数描述:
// --zygote : Start in zygote mode
// --start-system-server : Start the system server.
// --application : Start in application (stand alone, non zygote) mode.
这段描述以及解释清楚。
整个过程其实是2个部分
AppRuntime,虚拟机的启动,是在这个类里面执行的。
如上面的注解,如果传入的是start-system-server就
startSystemServer = true;
然后在后面的位置
if (startSystemServer) {//加入start-system-server参数
args.add(String8("start-system-server"));
}
runtime.start("com.android.internal.os.ZygoteInit", args, zygote);
zygote启动模式,也就是start-system-server模式,就启动com.android.internal.os.ZygoteInit进程的虚拟机。
因为android是一个进程,一个虚拟机进程。
如果是启动application,就会走到
application = true;
后面就启动
} else if (className) {
runtime.start("com.android.internal.os.RuntimeInit", args, zygote);
这里就是通过jvm启动一个application的进程
platform/frameworks/base/core/jni/AndroidRuntime.cpp
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
... //打印一些日志,获取ANDROID_ROOT环境变量
/* start the virtual machine */
JniInvocation jni_invocation;
jni_invocation.Init(NULL);//初始化JNI,加载libart.so
JNIEnv* env;
if (startVm(&mJavaVM, &env, zygote) != 0) {//创建虚拟机
return;
}
onVmCreated(env);//表示虚拟创建完成,但是里面是空实现
/*
* Register android functions.
*/
if (startReg(env) < 0) {注册JNI函数
ALOGE("Unable to register all android natives/n");
return;
}
... //JNI方式调用ZygoteInit类的main函数
}
startVm启动虚拟机
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
... //打印一些日志,获取ANDROID_ROOT环境变量
/* start the virtual machine */
JniInvocation jni_invocation;
jni_invocation.Init(NULL);//初始化JNI,加载libart.so
JNIEnv* env;
if (startVm(&mJavaVM, &env, zygote) != 0) {//创建虚拟机
return;
}
onVmCreated(env);//表示虚拟创建完成,但是里面是空实现
/*
* Register android functions.
*/
if (startReg(env) < 0) {注册JNI函数
ALOGE("Unable to register all android natives/n");
return;
}
... //JNI方式调用ZygoteInit类的main函数
}
/*
* 1.FindSymbol函数内部实际调用的是dlsym
* 2.dlsym作用是根据 动态链接库 操作句柄(handle)与符号(symbol),返回符号对应的地址
* 3.这里实际就是从libart.so中将JNI_GetDefaultJavaVMInitArgs等对应的地址存入&JNI_GetDefaultJavaVMInitArgs_中
*/
if (!FindSymbol(reinterpret_cast<void**>(&JNI_GetDefaultJavaVMInitArgs_),
"JNI_GetDefaultJavaVMInitArgs")) {
return false;
}
if (!FindSymbol(reinterpret_cast<void**>(&JNI_CreateJavaVM_),
"JNI_CreateJavaVM")) {
return false;
}
if (!FindSymbol(reinterpret_cast<void**>(&JNI_GetCreatedJavaVMs_),
"JNI_GetCreatedJavaVMs")) {
return false;
}
return true;
Init函数主要作用是初始化JNI,具体工作是首先通过dlopen加载libart.so获得其句柄,然后调用dlsym从libart.so中找到
JNI_GetDefaultJavaVMInitArgs、JNI_CreateJavaVM、JNI_GetCreatedJavaVMs三个函数地址,赋值给对应成员属性,
这三个函数会在后续虚拟机创建中调用.
int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv, bool zygote)
{
JavaVMInitArgs initArgs;
...
addOption("exit", (void*) runtime_exit);各//将参数放入mOptions数组中
...
initArgs.version = JNI_VERSION_1_4;
initArgs.options = mOptions.editArray();//将mOptions赋值给initArgs
initArgs.nOptions = mOptions.size();
initArgs.ignoreUnrecognized = JNI_FALSE;
if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {//调用libart.so的JNI_CreateJavaVM函数
ALOGE("JNI_CreateJavaVM failed/n");
return -1;
}
return 0;
}
extern "C" jint JNI_CreateJavaVM(JavaVM** p_vm, JNIEnv** p_env, void* vm_args) {
return JniInvocation::GetJniInvocation().JNI_CreateJavaVM(p_vm, p_env, vm_args);
}
jint JniInvocation::JNI_CreateJavaVM(JavaVM** p_vm, JNIEnv** p_env, void* vm_args) {
return JNI_CreateJavaVM_(p_vm, p_env, vm_args);//调用之前初始化的JNI_CreateJavaVM_
}
主要就是存储一些参数到mOptions 里面,另外就是调用JNI_CreateJavaVM方法调起VM
startReg首先是设置了Android创建线程的处理函数,然后创建了一个200容量的局部引用作用域,用于确保不会出现OutOfMemoryException, 最后就是调用register_jni_procs进行JNI注册
我们看看register_jni_procs传入的RegJNIRec数组gRegJNI,里面就是一堆的函数指针
static const RegJNIRec gRegJNI[] = {
REG_JNI(register_com_android_internal_os_RuntimeInit),
REG_JNI(register_com_android_internal_os_ZygoteInit),
REG_JNI(register_android_os_SystemClock),
REG_JNI(register_android_util_EventLog),
REG_JNI(register_android_util_Log),
REG_JNI(register_android_util_MemoryIntArray)
...
}
我们随便看一个register_com_android_internal_os_ZygoteInit,这实际上是自定义JNI函数并进行动态注册的标准写法,
内部是调用JNI的RegisterNatives,这样注册后,Java类ZygoteInit的native方法nativeZygoteInit就会调用com_android_internal_os_ZygoteInit_nativeZygoteInit函数
int register_com_android_internal_os_ZygoteInit(JNIEnv* env)
{
const JNINativeMethod methods[] = {
{ "nativeZygoteInit", "()V",
(void*) com_android_internal_os_ZygoteInit_nativeZygoteInit },
};
return jniRegisterNativeMethods(env, "com/android/internal/os/ZygoteInit",
methods, NELEM(methods));
}
void AndroidRuntime::start(const char* className, const Vector<String8>& options, bool zygote)
{
/*
* We want to call main() with a String array with arguments in it.
* At present we have two arguments, the class name and an option string.
* Create an array to hold them.
*/
//接下来的这些语法大家应该比较熟悉了,都是JNI里的语法,主要作用就是调用ZygoteInit类的main函数
jclass stringClass;
jobjectArray strArray;
jstring classNameStr;
stringClass = env->FindClass("java/lang/String");
assert(stringClass != NULL);
strArray = env->NewObjectArray(options.size() + 1, stringClass, NULL);
assert(strArray != NULL);
classNameStr = env->NewStringUTF(className);
assert(classNameStr != NULL);
env->SetObjectArrayElement(strArray, 0, classNameStr);
for (size_t i = 0; i < options.size(); ++i) {
jstring optionsStr = env->NewStringUTF(options.itemAt(i).string());
assert(optionsStr != NULL);
env->SetObjectArrayElement(strArray, i + 1, optionsStr);
}
/*
* Start VM. This thread becomes the main thread of the VM, and will
* not return until the VM exits.
*/
char* slashClassName = toSlashClassName(className);//将字符中的.转换为/
jclass startClass = env->FindClass(slashClassName);//找到class
if (startClass == NULL) {
ALOGE("JavaVM unable to locate class %s /n", slashClassName);
/* keep going */
} else {
jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
"([Ljava/lang/String;)V");
if (startMeth == NULL) {
ALOGE("JavaVM unable to find main() in %s /n", className);
/* keep going */
} else {
env->CallStaticVoidMethod(startClass, startMeth, strArray);//调用main函数
#if 0
if (env->ExceptionCheck())
threadExitUncaughtException(env);
#endif
}
}
free(slashClassName);
ALOGD("Shutting down VM/n");
if (mJavaVM->DetachCurrentThread() != JNI_OK)//退出当前线程
ALOGW("Warning: unable to detach main thread/n");
if (mJavaVM->DestroyJavaVM() != 0) //创建一个线程,该线程会等待所有子线程结束后关闭虚拟机
ALOGW("Warning: VM did not shut down cleanly/n");
}