锁规则:解锁必然发生在随后的加锁之前 ) Synchronized 和 Lock 线程A释放锁后,会将共享变更操作刷新到主内存中
线程B获取锁时,JMM会将该线程的本地内存置为无效,被监视器保护的临界区代码必须从主内存中读取共享变量
补充: 使用同步代码块的好处在于其他线程仍可以访问非synchronized(this)的同步代码块
/**
* 先定义一个测试模板类
* 这里补充一个知识点:Thread.sleep(long)不会释放锁
* 读者可参见笔者的`并发番@Thread一文通`
*/
public class SynchronizedDemo {
public static synchronized void staticMethod(){
System.out.println(Thread.currentThread().getName() + "访问了静态同步方法staticMethod");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "结束访问静态同步方法staticMethod");
}
public static void staticMethod2(){
System.out.println(Thread.currentThread().getName() + "访问了静态同步方法staticMethod2");
synchronized (SynchronizedDemo.class){
System.out.println(Thread.currentThread().getName() + "在staticMethod2方法中获取了SynchronizedDemo.class");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public synchronized void synMethod(){
System.out.println(Thread.currentThread().getName() + "访问了同步方法synMethod");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "结束访问同步方法synMethod");
}
public synchronized void synMethod2(){
System.out.println(Thread.currentThread().getName() + "访问了同步方法synMethod2");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "结束访问同步方法synMethod2");
}
public void method(){
System.out.println(Thread.currentThread().getName() + "访问了普通方法method");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "结束访问普通方法method");
}
private Object lock = new Object();
public void chunkMethod(){
System.out.println(Thread.currentThread().getName() + "访问了chunkMethod方法");
synchronized (lock){
System.out.println(Thread.currentThread().getName() + "在chunkMethod方法中获取了lock");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public void chunkMethod2(){
System.out.println(Thread.currentThread().getName() + "访问了chunkMethod2方法");
synchronized (lock){
System.out.println(Thread.currentThread().getName() + "在chunkMethod2方法中获取了lock");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public void chunkMethod3(){
System.out.println(Thread.currentThread().getName() + "访问了chunkMethod3方法");
//同步代码块
synchronized (this){
System.out.println(Thread.currentThread().getName() + "在chunkMethod3方法中获取了this");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public void stringMethod(String lock){
synchronized (lock){
while (true){
System.out.println(Thread.currentThread().getName());
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}
当一个线程进入同步方法时,其他线程可以正常访问其他非同步方法
public static void main(String[] args) {
SynchronizedDemo synDemo = new SynchronizedDemo();
Thread thread1 = new Thread(() -> {
//调用普通方法
synDemo.method();
});
Thread thread2 = new Thread(() -> {
//调用同步方法
synDemo.synMethod();
});
thread1.start();
thread2.start();
}
---------------------
//输出:
Thread-1访问了同步方法synMethod
Thread-0访问了普通方法method
Thread-0结束访问普通方法method
Thread-1结束访问同步方法synMethod
//分析:通过结果可知,普通方法和同步方法是非阻塞执行的
当一个线程执行同步方法时,其他线程不能访问任何同步方法
public static void main(String[] args) {
SynchronizedDemo synDemo = new SynchronizedDemo();
Thread thread1 = new Thread(() -> {
synDemo.synMethod();
synDemo.synMethod2();
});
Thread thread2 = new Thread(() -> {
synDemo.synMethod2();
synDemo.synMethod();
});
thread1.start();
thread2.start();
}
---------------------
//输出:
Thread-0访问了同步方法synMethod
Thread-0结束访问同步方法synMethod
Thread-0访问了同步方法synMethod2
Thread-0结束访问同步方法synMethod2
Thread-1访问了同步方法synMethod2
Thread-1结束访问同步方法synMethod2
Thread-1访问了同步方法synMethod
Thread-1结束访问同步方法synMethod
//分析:通过结果可知,任务的执行是阻塞的,显然Thread-1必须等待Thread-0执行完毕之后才能继续执行
当同步代码块都是同一个锁时,方法可以被所有线程访问,但同一个锁的同步代码块同一时刻只能被一个线程访问
public static void main(String[] args) {
SynchronizedDemo synDemo = new SynchronizedDemo();
Thread thread1 = new Thread(() -> {
//调用同步块方法
synDemo.chunkMethod();
synDemo.chunkMethod2();
});
Thread thread2 = new Thread(() -> {
//调用同步块方法
synDemo.chunkMethod();
synDemo.synMethod2();
});
thread1.start();
thread2.start();
}
---------------------
//输出:
Thread-0访问了chunkMethod方法
Thread-1访问了chunkMethod方法
Thread-0在chunkMethod方法中获取了lock
...停顿等待...
Thread-1在chunkMethod方法中获取了lock
...停顿等待...
Thread-0访问了chunkMethod2方法
Thread-0在chunkMethod2方法中获取了lock
...停顿等待...
Thread-1访问了chunkMethod2方法
Thread-1在chunkMethod2方法中获取了lock
//分析可知:
//1.对比18行和19行可知,即使普通方法有同步代码块,但方法的访问是非阻塞的,任何线程都可以自由进入
//2.对比20行、22行以及25行和27行可知,对于同一个锁的同步代码块的访问一定是阻塞的
public static void main(String[] args) {
SynchronizedDemo synDemo = new SynchronizedDemo();
Thread thread1 = new Thread(() -> {
//调用同步块方法
synDemo.chunkMethod();
synDemo.chunkMethod2();
});
Thread thread2 = new Thread(() -> {
//调用同步块方法
synDemo.chunkMethod2();
synDemo.chunkMethod();
});
thread1.start();
thread2.start();
}
---------------------
//输出:
Thread-0访问了chunkMethod方法
Thread-1访问了chunkMethod2方法
Thread-0在chunkMethod方法中获取了lock
...停顿等待...
Thread-0访问了chunkMethod2方法
Thread-1在chunkMethod2方法中获取了lock
...停顿等待...
Thread-1访问了chunkMethod方法
Thread-0在chunkMethod2方法中获取了lock
...停顿等待...
Thread-1在chunkMethod方法中获取了lock
//分析可知:
//现象:对比20行、22行和24行、25行可知,虽然是同一个lock对象,但其不同代码块的访问是非阻塞的
//原因:根源在于锁的释放和重新竞争,当Thread-0访问完chunkMethod方法后会先释放锁,这时Thread-1就有机会能获取到锁从而优先执行,依次类推到24行、25行时,Thread-0又重新获取到锁优先执行了
//注意:但有一点是必须的,对于同一个锁的同步代码块的访问一定是阻塞的
//补充:同步方法之所有会被全部阻塞,是因为synDemo对象一直被线程在内部把持住就没释放过,论把持住的重要性!
3.2.3 原则 3.2.2 和 3.2.3 原则 public static void main(String[] args) {
SynchronizedDemo synDemo = new SynchronizedDemo();
Thread thread1 = new Thread(() -> synDemo.chunkMethod() );
Thread thread2 = new Thread(() -> synDemo.chunkMethod3());
Thread thread3 = new Thread(() -> staticMethod());
Thread thread4 = new Thread(() -> staticMethod2());
thread1.start();
thread2.start();
thread3.start();
thread4.start();
}
---------------------
//输出:
Thread-1访问了chunkMethod3方法
Thread-1在chunkMethod3方法中获取了this
Thread-2访问了静态同步方法staticMethod
Thread-0访问了chunkMethod方法
Thread-0在chunkMethod方法中获取了lock
Thread-3访问了静态同步方法staticMethod2
...停顿等待...
Thread-2结束访问静态同步方法staticMethod
Thread-3在staticMethod2方法中获取了SynchronizedDemo.class
//分析可知:
//现象:对比16行、18行和24行、25行可知,虽然是同一个lock对象,但其不同代码块的访问是非阻塞的
//原因:根源在于锁的释放和重新竞争,当Thread-0访问完chunkMethod方法后会先释放锁,这时Thread-1就有机会能获取到锁从而优先执行,依次类推到24行、25行时,Thread-0又重新获取到锁优先执行了
public static void main(String[] args) {
SynchronizedDemo synDemo = new SynchronizedDemo();
Thread thread1 = new Thread(() -> {
synDemo.synMethod();
synDemo.synMethod2();
});
Thread thread2 = new Thread(() -> {
synDemo.synMethod2();
synDemo.synMethod();
});
thread1.start();
thread2.start();
}
---------------------
//输出:
Thread-0访问了同步方法synMethod
Thread-0结束访问同步方法synMethod
Thread-0访问了同步方法synMethod2
Thread-0结束访问同步方法synMethod2
Thread-1访问了同步方法synMethod2
Thread-1结束访问同步方法synMethod2
Thread-1访问了同步方法synMethod
Thread-1结束访问同步方法synMethod
//分析:对比16行和18行可知,在代码块中继续调用了当前实例对象的另外一个同步方法,再次请求当前实例锁时,将被允许,进而执行方法体代码,这就是重入锁最直接的体现
public static void main(String[] args) {
SynchronizedDemo synDemo = new SynchronizedDemo();
Thread thread1 = new Thread(() -> synDemo.stringMethod("sally"));
Thread thread2 = new Thread(() -> synDemo.stringMethod("sally"));
thread1.start();
thread2.start();
}
---------------------
//输出:
Thread-0
Thread-0
Thread-0
Thread-0
...死循环...
//分析:输出结果永远都是Thread-0的死循环,也就是说另一个线程,即Thread-1线程根本不会运行
//原因:同步块中的锁是同一个字面量
public class SynchronizedDemo {
static Integer i = 0; //Integer是final Class
public static void main(String[] args) throws InterruptedException {
Runnable runnable = new Runnable() {
@Override
public void run() {
for (int j = 0;j<10000;j++){
synchronized (i){
i++;
}
}
}
};
Thread thread1 = new Thread(runnable);
Thread thread2 = new Thread(runnable);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
System.out.println(i);
}
}
---------------------
//输出:
14134
//分析:跟预想中的20000不一致,当使用Integer作为对象锁时但还有计算操作就会出现并发问题
我们通过反编译发现执行i++操作相当于执行了i = Integer.valueOf(i.intValue()+1)
通过查看Integer的valueOf方法实现可知,其每次都new了一个新的Integer对象,锁变了有木有!!!
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i); //每次都new一个新的锁有木有!!!
}
public static void main(String[] args) {
Object lock = new Object();
Object lock2 = new Object();
Thread thread1 = new Thread(() -> {
synchronized (lock){
System.out.println(Thread.currentThread().getName() + "获取到lock锁");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lock2){
System.out.println(Thread.currentThread().getName() + "获取到lock2锁");
}
}
});
Thread thread2 = new Thread(() -> {
synchronized (lock2){
System.out.println(Thread.currentThread().getName() + "获取到lock2锁");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (lock){
System.out.println(Thread.currentThread().getName() + "获取到lock锁");
}
}
});
thread1.start();
thread2.start();
}
---------------------
//输出:
Thread-1获取到lock2锁
Thread-0获取到lock锁
.....
//分析:线程0获得lock锁,线程1获得lock2锁,但之后由于两个线程还要获取对方已持有的锁,但已持有的锁都不会被双方释放,线程"假死",无法往下执行,从而形成死循环,即死锁,之后一直在做无用的死循环,严重浪费系统资源
我们用 jstack 查看一下这个任务的各个线程运行情况,可以发现两个线程都被阻塞 BLOCKED
我们很明显的发现,Java-level=deadlock,即死锁,两个线程相互等待对方的锁
Synchronized一文通(1.8版) 由 黄志鹏kira 创作,采用 知识共享 署名-非商业性使用 4.0 国际 许可协议 进行许可。