Collections.synchronizedMap(new HashMap())
private static class SynchronizedMap<K,V>
implements Map<K,V>, Serializable {
private static final long serialVersionUID = 1978198479659022715L;
private final Map<K,V> m; // 传入的map
final Object mutex; // 锁资源对象,对map的任何操作都会锁该对象
SynchronizedMap(Map<K,V> m) {
this.m = Objects.requireNonNull(m);
mutex = this;
}
SynchronizedMap(Map<K,V> m, Object mutex) {
this.m = m;
this.mutex = mutex;
}
public int size() {
synchronized (mutex) {return m.size();}
}
public boolean isEmpty() {
synchronized (mutex) {return m.isEmpty();}
}
public boolean containsKey(Object key) {
synchronized (mutex) {return m.containsKey(key);}
}
public boolean containsValue(Object value) {
synchronized (mutex) {return m.containsValue(value);}
}
public V get(Object key) {
synchronized (mutex) {return m.get(key);}
}
public V put(K key, V value) {
synchronized (mutex) {return m.put(key, value);}
}
public V remove(Object key) {
synchronized (mutex) {return m.remove(key);}
}
public void putAll(Map<? extends K, ? extends V> map) {
synchronized (mutex) {m.putAll(map);}
}
public void clear() {
synchronized (mutex) {m.clear();}
}
....... //省略
}
Collections.synchronizedList(new LinkedList<String>())
高并发环境中性能最好的队列,主要是利用CAS进行无锁操作,非阻塞队列
首先我们来看下它的Node节点:
private static class Node<E> {
volatile E item; //当前对象
volatile Node<E> next; //下一个对象,以此来构建链表
Node(E item) {
UNSAFE.putObject(this, itemOffset, item);
}
boolean casItem(E cmp, E val) { //(期望值,设置目标值),cas操作
return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
}
void lazySetNext(Node<E> val) {
UNSAFE.putOrderedObject(this, nextOffset, val);
}
boolean casNext(Node<E> cmp, Node<E> val) {
return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
}
private static final sun.misc.Unsafe UNSAFE;
private static final long itemOffset;
private static final long nextOffset;
static {
try {
UNSAFE = sun.misc.Unsafe.getUnsafe();
Class<?> k = Node.class;
itemOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("item"));
nextOffset = UNSAFE.objectFieldOffset
(k.getDeclaredField("next"));
} catch (Exception e) {
throw new Error(e);
}
}
}
ConcurrentLinkedQueue类内部的tail指针更新并不是实时的,可能存在拖延现象,每次更新跳跃两个元素,如下图:
然后再看一下新增节点offer()方法:
public boolean offer(E e) {
checkNotNull(e); //非空校验
final Node<E> newNode = new Node<E>(e);
for (Node<E> t = tail, p = t;;) { //for循环 无出口,知道设置成功
Node<E> q = p.next; //获取tail节点的next对象
if (q == null) { //第一次插入,p.next对象为空
// p 为最后一个节点
if (p.casNext(null, newNode)) { //插入新元素,此时p=t
//每两次更新tail
if (p != t)
casTail(t, newNode);
return true;
}
// cas竞争失败,再次循环
}
else if (p == q) //遇到哨兵
// We have fallen off list. If tail is unchanged, it
// will also be off-list, in which case we need to
// jump to head, from which all live nodes are always
// reachable. Else the new tail is a better bet.
p = (t != (t = tail)) ? t : head;
else
// Check for tail updates after two hops.
p = (p != t && t != (t = tail)) ? t : q; //t!=(t=tail) !=并不是原子操作,先取左边t的值,再取右边t=tail
}
}
使用场景:读操作远远大于写操作,读操作越快越好,写操作慢一些也没事
特点:读取不用加锁,写入不会阻塞读取操作,只有写入和写入需要同步等待,读性能大幅提升
原理:写入时进行一次自我复制,修改内容写入副本中,写完后,再用副本内容替代原来的数据
public boolean add(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len + 1); //进行复制
newElements[len] = e; //新数组代替老数组
setArray(newElements);
return true;
} finally {
lock.unlock();
}
}