OkHttp使用Call抽象出一个满足请求的模型,尽管中间可能会有多个请求或响应。执行Call有两种方式,同步或异步
OkHttpClient client = new OkHttpClient();复制代码
通过okhttp源码分析,直接创建的 OkHttpClient 对象并且默认构造 builder 对象进行初始化
public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
public OkHttpClient() {
this(new Builder());
}
OkHttpClient(Builder builder) {
this.dispatcher = builder.dispatcher;
this.proxy = builder.proxy;
this.protocols = builder.protocols;
this.connectionSpecs = builder.connectionSpecs;
this.interceptors = Util.immutableList(builder.interceptors);
this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
this.eventListenerFactory = builder.eventListenerFactory;
this.proxySelector = builder.proxySelector;
this.cookieJar = builder.cookieJar;
this.cache = builder.cache;
this.internalCache = builder.internalCache;
this.socketFactory = builder.socketFactory;
boolean isTLS = false;
......
this.hostnameVerifier = builder.hostnameVerifier;
this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
certificateChainCleaner);
this.proxyAuthenticator = builder.proxyAuthenticator;
this.authenticator = builder.authenticator;
this.connectionPool = builder.connectionPool;
this.dns = builder.dns;
this.followSslRedirects = builder.followSslRedirects;
this.followRedirects = builder.followRedirects;
this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
this.connectTimeout = builder.connectTimeout;
this.readTimeout = builder.readTimeout;
this.writeTimeout = builder.writeTimeout;
this.pingInterval = builder.pingInterval;
}
}复制代码
Request request = new Request.Builder().url("url").build();
okHttpClient.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {
}
@Override
public void onResponse(Call call, Response response) throws IOException {
}
});复制代码
Request request = new Request.Builder().url("url").build();复制代码
初始化构造者模式和请求对象 ,并且用URL替换Web嵌套字URL。
public final class Request {
public Builder() {
this.method = "GET";
this.headers = new Headers.Builder();
}
public Builder url(String url) {
......
// Silently replace web socket URLs with HTTP URLs.
if (url.regionMatches(true, 0, "ws:", 0, 3)) {
url = "http:" + url.substring(3);
} else if (url.regionMatches(true, 0, "wss:", 0, 4)) {
url = "https:" + url.substring(4);
}
HttpUrl parsed = HttpUrl.parse(url);
......
return url(parsed);
}
public Request build() {
......
return new Request(this);
}
}复制代码
okHttpClient.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {
}
@Override
public void onResponse(Call call, Response response) throws IOException {
}
});复制代码
源码分析:
public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
@Override
public Call newCall(Request request) {
return new RealCall(this, request, false /* for web socket */);
}
}复制代码
RealCall 实现了 Call.Factory 接口创建了一个 RealCall 的实例,而 RealCall 是 Call 接口的 实现 。
final class RealCall implements Call {
@Override
public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
}复制代码
由上述源码得知:
Call 只能被执行一次 ,如果想要一个完全一样的call,可以利用call#clone方法进行克隆。 client.dispatcher().enqueue(this) 来进行实际执行, dispatcher 是刚才看到的 OkHttpClient.Builder 的成员之一。 AsyncCall类 是 RealCall类 的一个 内部类 并且继承 NamedRunnable ,那么首先看NamedRunnable类是什么样的,如下: public abstract class NamedRunnable implements Runnable {
......
@Override
public final void run() {
......
try {
execute();
}
......
}
protected abstract void execute();
}复制代码
可以看到 NamedRunnable 实现了 Runnable 接口 并且是个 抽象类 ,其 抽象方法 时 execute() ,该方法是在 run() 方法中 被调用 的,这也就 意味着NamedRunnable是一个任务 ,并且其子类 应该实现execute()方法 。下面再看AsyncCall的实现:
final class AsyncCall extends NamedRunnable {
private final Callback responseCallback;
AsyncCall(Callback responseCallback) {
super("OkHttp %s", redactedUrl());
this.responseCallback = responseCallback;
}
......复制代码
final class RealCall implements Call {
@Override
protected void execute() {
boolean signalledCallback = false;
try {
Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} catch (IOException e) {
......
responseCallback.onFailure(RealCall.this, e);
} finally {
client.dispatcher().finished(this);
}
}
}复制代码
AsyncCall类 实现了 execute() 方法,首先是调用 getResponseWithInterceptorChain() 方法 获取响应 ,然后 获取成功 后,就调用回调的 onResponse() 方法,若 失败 ,就回调 onFailure() 方法。最后,调用 Dispatcher 的 finished() 方法。
关键代码:
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
复制代码
和
responseCallback.onResponse(RealCall.this, response); 复制代码
走完这两句代码会进行回调到刚刚我们初始化OkHttp的地方,如下:
okHttpClient.newCall(request).enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {
}
@Override
public void onResponse(Call call, Response response) throws IOException {
}
});复制代码
通过传入的 callback 封装了 AsyncCall 对象,在AsyncCall之后直接调用了 dispatcher().enqueue() 方法,并将前面创建好的AsyncCall传到这个方法当中。
client.dispatcher() 返回的就是 一个 dispatcher 对象 ,同时他的 初始化操作 也是在前面构建okhttpClient对象时它的内部的构造方法已经初始化好了,dispatcher默认值。
enqueue() 方法 如下:
synchronized void enqueue(AsyncCall call){
if(runningAsyncCalls.size() > maxRequests && runningCallsForHost(call)){
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
readyAsyncCalls.add(call);
}
}复制代码
enqueue() 方法本身加了一个 同步锁 ,并且这个方法传入了刚才的 Runnable 实例 ,也就是 AsyncCall 对象 。
首先是一个判断,就是正在运行的这个异步任务( maxRequests = 64 )和正在调度请求每一个主机的最大数( maxRequestsPerHost = 5 )进行这两个值的判断你,如果这两个值都在最大数里面,那么就可以把刚才传入的AsyncCall对象添加到正在执行的异步请求队列( runningAsyncCalls )当中,如果不满足就会加到准备就绪的异步请求队列当中( readyAsyncCalls )。
public final class Dispatcher {
/** 最大并发请求数为64 */
private int maxRequests = 64;
/** 每个主机最大请求数为5 */
private int maxRequestsPerHost = 5;
/** 线程池 */
private ExecutorService executorService;
/** 准备执行的请求 */
private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
/** 正在执行的异步请求,包含已经取消但未执行完的请求 */
private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
/** 正在执行的同步请求,包含已经取消单未执行完的请求 */
private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();复制代码
在OkHttp,使用如下构造了 单例线程池
public synchronized ExecutorService executorService() {
if (executorService == null) {
executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
}
return executorService;
}复制代码
构造一个线程池ExecutorService:
executorService = new ThreadPoolExecutor(
//corePoolSize 最小并发线程数,如果是0的话,空闲一段时间后所有线程将全部被销毁
0,
//maximumPoolSize: 最大线程数,当任务进来时可以扩充的线程最大值,当大于了这个值就会根据丢弃处理机制来处理
Integer.MAX_VALUE,
//keepAliveTime: 当线程数大于corePoolSize时,多余的空闲线程的最大存活时间
60,
//单位秒
TimeUnit.SECONDS,
//工作队列,先进先出
new SynchronousQueue<Runnable>(),
//单个线程的工厂
Util.threadFactory("OkHttp Dispatcher", false));复制代码
可以看出,在 OkHttp 中,构建了一个线程范围在 [0, Integer.MAX_VALUE] 的 线程池 ,它 不保留任何最小线程数 , 随时创建更多的线程数 ,当线程 空闲时只能存活 60s ,它使用了一个 不存储元素的阻塞工作队列 ,一个叫做“ OkHttp Dispatcher ”的 线程工厂 。
也就是说,在实际运行中,当收到10个并发请求时,线程池创建10个线程,当工作完成后,线程池会在60s后相继关闭所有线程。
synchronized void enqueue(AsyncCall call) {
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
readyAsyncCalls.add(call);
}
}复制代码
从上述源码分析,如果当前还能执行一个并发请求,则加入runningAsyncCalls,立即执行,否则加入readyAsyncCall队列。
try {
Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} finally {
client.dispatcher().finished(this);
}复制代码
在任务执行完成后, 无论是否有异常 ,finally代码段总会被执行,也就是会调用 DIspatcher 的 finished() 方法。
void finished(AsyncCall call) {
finished(runningAsyncCalls, call, true);
}复制代码
从上面的代码可以看出,第一个参数传入的是正在运行的异步队列,第三个参数为true,下面再看有 三个参数 的 finished() 方法:
private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
int runningCallsCount;
Runnable idleCallback;
synchronized (this) {
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
if (promoteCalls) promoteCalls();
runningCallsCount = runningCallsCount();
idleCallback = this.idleCallback;
}
if (runningCallsCount == 0 && idleCallback != null) {
idleCallback.run();
}
}复制代码
打开源码,发现它将 正在运行的任务Call 从队列 runningAsyncCalls 中移除后,获取 运行数量 判断是否进入 Idle 状态 ,接着执行 promoteCalls() 方法,
下面是 promoteCalls() 方法:
private void promoteCalls() {
if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
AsyncCall call = i.next();
if (runningCallsForHost(call) < maxRequestsPerHost) {
i.remove();
runningAsyncCalls.add(call);
executorService().execute(call);
}
if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
}
}复制代码
该方法主要是 遍历等待队列 ( readyAsynsCalls ),并且 需要满足同一主机的请求( runningCallsForHost(Call) )小于 maxRequestsPerHost 时,就移到运行队列中并交给线程池运行。就主动的把缓存队列向前走了一步,而没有使用互斥锁等复杂编码。
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List<Interceptor> interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(retryAndFollowUpInterceptor);
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
Interceptor.Chain chain = new RealInterceptorChain(
interceptors, null, null, null, 0, originalRequest);
return chain.proceed(originalRequest);
}复制代码
流程图:
OkHttpClient 时设置的
interceptors
(2)负责 失败重试以及重定向 的 RetryAndFollowUpInterceptor
(3)负责把 用户 构造的 请求 转换为 发送到服务器 的 请求 、 把服务器返回的响应 转换为 用户友好的响应 的 BridgeInterceptor
(4)负责 读取缓存 直接返回、 更新缓存 的 CacheInterceptor
(5) 负责和服务器建立连接 的 ConnectInterceptor
(6)配置 OkHttpClient 时设置的 networkInterceptors
(7)负责向 服务器发送请求数据 、从 服务器读取响应数据 的 CallServerInterceptor
OkHttp 的这种 拦截器链 采用的是 责任链模式 ,这样的 好处 是将 请求的发送和处理分开 ,并且可以 动态添加 中间的 处理方 实现对 请求的处理、短路等操作 。
从上述源码得知,不管 OkHttp 有多少拦截器最后都会走,如下方法:
Interceptor.Chain chain = new RealInterceptorChain(
interceptors, null, null, null, 0, originalRequest);
return chain.proceed(originalRequest);复制代码
从方法名字基本可以猜到是干嘛的,调用 chain.proceed(originalRequest); 将 request 传递进去,从拦截器链里拿到返回结果。
那么拦截器Interceptor是干嘛的,Chain是干嘛的呢?
继续往下看 RealInterceptorChain类
下面是 RealInterceptorChain类 的定义,该类 实现了 Chain接口 ,在 getResponseWithInterceptor() 调用时有好几个参数都传入的null。
public final class RealInterceptorChain implements Interceptor.Chain {
public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
HttpCodec httpCodec, RealConnection connection, int index, Request request) {
this.interceptors = interceptors;
this.connection = connection;
this.streamAllocation = streamAllocation;
this.httpCodec = httpCodec;
this.index = index;
this.request = request;
}
......
@Override
public Response proceed(Request request) throws IOException {
return proceed(request, streamAllocation, httpCodec, connection);
}
public Response proceed(Request request, StreamAllocation streamAllocation,
HttpCodec httpCodec, RealConnection connection) throws IOException {
if (index >= interceptors.size()) throw new AssertionError();
calls++;
......
// Call the next interceptor in the chain.
RealInterceptorChain next = new RealInterceptorChain(
interceptors, streamAllocation, httpCodec, connection, index + 1, request);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
......
return response;
}
protected abstract void execute();
}复制代码
主要看 processd() 方法,proceed()方法中判断 index (此时为0)是否大于或者等于 client.interceptors(list) 的大小。由于 HTTPStream 为 null ,所以首先 创建 next 拦截器链 ,需要把索引设置为 index+1 即可;然后获取 第一个拦截器 ,调用其 intercept() 方法。
public interface Interceptor {
Response intercept(Chain chain) throws IOException;
interface Chain {
Request request();
Response proceed(Request request) throws IOException;
Connection connection();
}
}复制代码
BridgeInterceptor 类从用户的请求的构建网络请求,然后提交给网络,最后从网络响应中提取出用户响应。
从最上面的图可以看出,BridgeInterceptor实现了 适配的功能 。下面是其 intercept() 方法
public final class BridgeInterceptor implements Interceptor {
......
@Override
public Response intercept(Chain chain) throws IOException {
Request userRequest = chain.request();
Request.Builder requestBuilder = userRequest.newBuilder();
RequestBody body = userRequest.body();
//如果存在请求主体部分,那么需要添加Content-Type、Content-Length首部
if (body != null) {
MediaType contentType = body.contentType();
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString());
}
long contentLength = body.contentLength();
if (contentLength != -1) {
requestBuilder.header("Content-Length", Long.toString(contentLength));
requestBuilder.removeHeader("Transfer-Encoding");
} else {
requestBuilder.header("Transfer-Encoding", "chunked");
requestBuilder.removeHeader("Content-Length");
}
}
//请求头部为null,则添加请求头内容
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
}
//连接断开,则请求保持连接状态
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive");
}
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
}
//若cookies为空,则添加对应的内容
List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
if (!cookies.isEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies));
}
//添加用户代理
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", Version.userAgent());
}
//此处执行chain类的proceed()方法,获得对应的网络请求数据
Response networkResponse = chain.proceed(requestBuilder.build());
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
Response.Builder responseBuilder = networkResponse.newBuilder()
.request(userRequest);
//得到的请求数据,并对这些数据进行判断,以便添加一些数据,如请求数据内容,头信息等
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
}
return responseBuilder.build();
}
/** Returns a 'Cookie' HTTP request header with all cookies, like {@code a=b; c=d}. */
private String cookieHeader(List<Cookie> cookies) {
StringBuilder cookieHeader = new StringBuilder();
for (int i = 0, size = cookies.size(); i < size; i++) {
if (i > 0) {
cookieHeader.append("; ");
}
Cookie cookie = cookies.get(i);
cookieHeader.append(cookie.name()).append('=').append(cookie.value());
}
return cookieHeader.toString();
}
}复制代码
从上面的代码可以看出,首先 获取原请求 ,然后在请求中 添加头信息 ,如 Host 、 Connection 、 Accept-Encoding 参数等,然后根据看是否需要 填充 Cookie ,在对原始请求做出处理后,使用 chain 的 proceed() 方法得到响应,接下来对 响应做处理得到用户响应,最后返回响应 。
接下来再看下一个拦截器ConnectionInterceptor类的处理:
public final class ConnectInterceptor implements Interceptor {
......
@Override
public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
RealConnection connection = streamAllocation.connection();
return realChain.proceed(request, streamAllocation, httpCodec, connection);
}
}复制代码
实际上建立连接就是创建一个 HttpCodec 对象,它利用 Okio 对 Socket 的 读写操作 进行封装,Okio以后有机会再进行分析,现在让我们对它们保持一个简单地认识:它对 java.io 和 java.nio 进行了 封装 ,让我们 更便捷高效的进行 io 操作 。
CallServerInterceptor 是拦截器链中 最后一个拦截器 ,负责将 网络请求提交给服务器 。它的 intercep() 方法实现如下:
@Override
public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
HttpCodec httpCodec = realChain.httpStream();
StreamAllocation streamAllocation = realChain.streamAllocation();
RealConnection connection = (RealConnection) realChain.connection();
Request request = realChain.request();
long sentRequestMillis = System.currentTimeMillis();
httpCodec.writeRequestHeaders(request);
Response.Builder responseBuilder = null;
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
// If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
// Continue" response before transmitting the request body. If we don't get that, return what
// we did get (such as a 4xx response) without ever transmitting the request body.
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
httpCodec.flushRequest();
responseBuilder = httpCodec.readResponseHeaders(true);
}
if (responseBuilder == null) {
// Write the request body if the "Expect: 100-continue" expectation was met.
Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());
BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
} else if (!connection.isMultiplexed()) {
// If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from
// being reused. Otherwise we're still obligated to transmit the request body to leave the
// connection in a consistent state.
streamAllocation.noNewStreams();
}
}
httpCodec.finishRequest();
if (responseBuilder == null) {
responseBuilder = httpCodec.readResponseHeaders(false);
}
Response response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
int code = response.code();
if (forWebSocket && code == 101) {
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build();
}
if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
streamAllocation.noNewStreams();
}
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
throw new ProtocolException(
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
}
return response;
}@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
HttpCodec httpCodec = realChain.httpStream();
StreamAllocation streamAllocation = realChain.streamAllocation();
RealConnection connection = (RealConnection) realChain.connection();
Request request = realChain.request();
long sentRequestMillis = System.currentTimeMillis();
httpCodec.writeRequestHeaders(request);
Response.Builder responseBuilder = null;
if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
// If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
// Continue" response before transmitting the request body. If we don't get that, return what
// we did get (such as a 4xx response) without ever transmitting the request body.
if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
httpCodec.flushRequest();
responseBuilder = httpCodec.readResponseHeaders(true);
}
if (responseBuilder == null) {
// Write the request body if the "Expect: 100-continue" expectation was met.
Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());
BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
request.body().writeTo(bufferedRequestBody);
bufferedRequestBody.close();
} else if (!connection.isMultiplexed()) {
// If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from
// being reused. Otherwise we're still obligated to transmit the request body to leave the
// connection in a consistent state.
streamAllocation.noNewStreams();
}
}
httpCodec.finishRequest();
if (responseBuilder == null) {
responseBuilder = httpCodec.readResponseHeaders(false);
}
Response response = responseBuilder
.request(request)
.handshake(streamAllocation.connection().handshake())
.sentRequestAtMillis(sentRequestMillis)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
int code = response.code();
if (forWebSocket && code == 101) {
// Connection is upgrading, but we need to ensure interceptors see a non-null response body.
response = response.newBuilder()
.body(Util.EMPTY_RESPONSE)
.build();
} else {
response = response.newBuilder()
.body(httpCodec.openResponseBody(response))
.build();
}
if ("close".equalsIgnoreCase(response.request().header("Connection"))
|| "close".equalsIgnoreCase(response.header("Connection"))) {
streamAllocation.noNewStreams();
}
if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
throw new ProtocolException(
"HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
}
return response;
}复制代码
从上面的代码中可以看出,首先获取 HttpStream 对象,然后调用 writeRequestHeaders() 方法 写入请求的头部 ,然后判断是否需要 写入请求的body部分 ,最后调用 finishRequest() 方法将所有数据刷新给 底层的 Socket ,接下里尝试调用 readResponseHeaders() 方法获取 响应的头部 ,然后再调用 openResponseBody() 方法得到响应的 body部分 ,最后返回响应。
OkHttp的底层是通过Java的Socket发送Http请求与接受响应的。但是OkHttp实现了连接池的概念,即对于同一主机的多个请求,其实可以公用一个Socket连接,而不是没发送完Http请求就关闭底层的Socket,这样就实现了连接池的概念。而OkHttp对Socket的读写操作使用的Okio库进行了一层封装。
本文所有内容来源于: android面试题-okhttp内核剖析
部分来源于: okhttp异步请求:AsyncCall、线程池、双向队列